Skip to main content

Fluorescence Microscopy with Nanometer Resolution

Nanoscale Resolution in Far-Field Fluorescence Microscopy

  • Chapter
  • First Online:
Book cover Springer Handbook of Microscopy

Part of the book series: Springer Handbooks ((SHB))

Abstract

Throughout the twentieth century, it was widely accepted that a light microscope relying on propagating light waves and conventional optical lenses could not discern details that were much finer than about half the wavelength of light, or \(200{-}400\,{\mathrm{nm}}\), due to diffraction. However, in the 1990s, the potential for overcoming the diffraction barrier was realized, and microscopy concepts were defined that now resolve fluorescent features down to molecular dimensions. This chapter discusses the simple yet powerful principles that make it possible to neutralize the resolution-limiting role of diffraction in far-field fluorescence nanoscopy methods such as STED, RESOLFT, PALM/"​"​STORM, or PAINT. In a nutshell, feature molecules residing closer than the diffraction barrier are transferred to different (quantum) states, usually a bright fluorescent state and a dark state, so that they become discernible for a brief period of detection. With nanoscopy, the interior of transparent samples, such as living cells and tissues, can be imaged at the nanoscale. A fresh look at the foundations shows that an in-depth description of the basic principles spawns powerful new concepts. Although they differ in some aspects, these concepts harness a local intensity minimum (of a doughnut-shaped or a standing wave pattern) for determining the coordinate of the fluorophore(s) to be registered. Most strikingly, by using an intensity minimum of the excitation light to establish the fluorophore position, MINFLUX nanoscopy has obtained the ultimate (super)resolution: the size of a molecule (\(\approx{}{\mathrm{1}}\,{\mathrm{nm}}\)).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 279.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 359.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. E. Abbe: Beiträge zur Theorie des Mikroskops und der mikroskopischen Wahrnehmung, Arch. Mikrosk. Anat. 9, 413–420 (1873)

    Google Scholar 

  2. C.J.R. Sheppard, R. Kompfner: Resonant scanning optical microscope, Appl. Opt. 17, 2879–2882 (1978)

    CAS  Google Scholar 

  3. T. Wilson, C.J.R. Sheppard: Theory and Practice of Scanning Optical Microscopy (Academic Press, New York 1984)

    Google Scholar 

  4. W. Denk, J.H. Strickler, W.W. Webb: Two-photon laser scanning fluorescence microscopy, Science 248, 73–76 (1990)

    CAS  Google Scholar 

  5. D.W. Pohl, D. Courjon: Near Field Optics (Kluwer, Dordrecht 1993)

    Google Scholar 

  6. B. Hecht, H. Bielefeldt, Y. Inouye, D.W. Pohl, L. Novotny: Facts and artifacts in near-field optical microscopy, J. Appl. Phys. 81, 2492–2498 (1997)

    CAS  Google Scholar 

  7. G.T. di Francia: Supergain antennas and optical resolving power, Nuovo Cim. 9(S3), 426–435 (1952)

    Google Scholar 

  8. W. Lukosz: Optical systems with resolving powers exceeding the classical limit, J. Opt. Soc. Am. 56, 1463–1472 (1966)

    CAS  Google Scholar 

  9. S.W. Hell, J. Wichmann: Breaking the diffraction resolution limit by stimulated emission: Stimulated emission depletion microscopy, Opt. Lett. 19(11), 780–782 (1994)

    CAS  Google Scholar 

  10. S.W. Hell, M. Kroug: Ground-state depletion fluorescence microscopy, a concept for breaking the diffraction resolution limit, Appl. Phys. B 60, 495–497 (1995)

    Google Scholar 

  11. S.W. Hell: Increasing the resolution of far-field fluorescence light microscopy by point-spread-function engineering. In: Nonlinear and Two-Photon-Induced Fluorescence, Topics in Fluorescence Spectroscopy, Vol. 5, ed. by J.R. Lakowicz (Plenum Press, New York 1997) pp. 361–422

    Google Scholar 

  12. S.W. Hell, S. Jakobs, L. Kastrup: Imaging and writing at the nanoscale with focused visible light through saturable optical transitions, Appl. Phys. A 77, 859–860 (2003)

    CAS  Google Scholar 

  13. S.W. Hell: Toward fluorescence nanoscopy, Nat. Biotechnol. 21(11), 1347–1355 (2003)

    CAS  Google Scholar 

  14. V. Westphal, S.W. Hell: Nanoscale resolution in the focal plane of an optical microscope, Phys. Rev. Lett. 94, 143903 (2005)

    Google Scholar 

  15. M. Born, E. Wolf: Principles of Optics, 6th edn. (Pergamon Press, Oxford 1993)

    Google Scholar 

  16. J. Pawley (Ed.): Handbook of Biological Confocal Microscopy (Plenum Press, New York 1995)

    Google Scholar 

  17. J.W. Goodman: Introduction to Fourier Optics (McGraw-Hill, New York 1968)

    Google Scholar 

  18. A. Egner, S. Jakobs, S.W. Hell: Fast 100-nm resolution 3D-microscope reveals structural plasticity of mitochondria in live yeast, Proc. Natl. Acad. Sci. USA 99, 3370–3375 (2002)

    CAS  Google Scholar 

  19. S.W. Hell, M. Schrader, H.T.M. van der Voort: Far-field fluorescence microscopy with three-dimensional resolution in the 100 nm range, J. Microsc. 185(1), 1–7 (1997)

    Google Scholar 

  20. M. Göppert-Mayer: Über Elementarakte mit zwei Quantensprüngen, Ann. Phys. (Leipz.) 9, 273–295 (1931)

    Google Scholar 

  21. N. Bloembergen: Nonlinear Optics (Benjamin, Amsterdam 1965)

    Google Scholar 

  22. J.R. Lakowicz, I. Gryczynski, H. Malak, Z. Gryczynski: Two-color two-photon excitation of fluorescence, Photochem. Photobiol. 64, 632–635 (1996)

    CAS  Google Scholar 

  23. C. Xu, W. Zipfel, J.B. Shear, R.M. Williams, W.W. Webb: Multiphoton fluorescence excitation: New spectral windows for biological nonlinear microscopy, Proc. Natl. Acad. Sci. USA 93, 10763–10768 (1996)

    CAS  Google Scholar 

  24. P.E. Hänninen, L. Lehtelä, S.W. Hell: Two- and multiphoton excitation of conjugate dyes with continuous wave lasers, Opt. Commun. 130, 29–33 (1996)

    Google Scholar 

  25. A. Schönle, P.E. Hänninen, S.W. Hell: Nonlinear fluorescence through intermolecular energy transfer and resolution increase in fluorescence microscopy, Ann. Phys. (Leipz.) 8(2), 115–133 (1999)

    Google Scholar 

  26. A. Schönle, S.W. Hell: Far-field fluorescence microscopy with repetetive excitation, Eur. Phys. J. D 6, 283–290 (1999)

    Google Scholar 

  27. R. Heintzmann, T.M. Jovin, C. Cremer: Saturated patterned excitation microscopy—A concept for optical resolution improvement, J. Opt. Soc. Am. A 19(8), 1599–1609 (2002)

    Google Scholar 

  28. V. Westphal, L. Kastrup, S.W. Hell: Lateral resolution of 28 nm (\(\lambda\)/25) in far-field fluorescence microscopy, Appl. Phys. B 77(4), 377–380 (2003)

    CAS  Google Scholar 

  29. Hell, S.W.: Double-scanning confocal microscope (Doppelkonfokales Rastermikroskop), European Patent EP041289B1 (1990)

    Google Scholar 

  30. S. Hell, E.H.K. Stelzer: Properties of a 4Pi-confocal fluorescence microscope, J. Opt. Soc. Am. A 9, 2159–2166 (1992)

    Google Scholar 

  31. M.G.L. Gustafsson, D.A. Agard, J.W. Sedat: Sevenfold improvement of axial resolution in 3D widefield microscopy using two objective lenses, Proc. SPIE 2412, 147–156 (1995)

    Google Scholar 

  32. D.L. Taylor, A.S. Waggoner, F. Lanni, R.F. Murphy, R.R. Birge: Applications of Fluorescence in the Biomedical Sciences (Alan R Liss Inc, New York 1986)

    Google Scholar 

  33. B. Bailey, D.L. Farkas, D.L. Taylor, F. Lanni: Enhancement of axial resolution in fluorescence microscopy by standing-wave excitation, Nature 366, 44–48 (1993)

    CAS  Google Scholar 

  34. V. Krishnamurthi, B. Bailey, F. Lanni: Image processing in 3-D standing wave fluorescence microscopy, Proc. SPIE 2655, 18–25 (1996)

    Google Scholar 

  35. R. Freimann, S. Pentz, H. Hörler: Development of a standing-wave fluorescence microscope with high nodal plane flatness, J. Microsc. 187(3), 193–200 (1997)

    CAS  Google Scholar 

  36. M. Nagorni, S.W. Hell: Coherent use of opposing lenses for axial resolution increase in fluorescence microscopy. I. Comparative study of concepts, J. Opt. Soc. Am. A 18(1), 36–48 (2001)

    CAS  Google Scholar 

  37. M. Nagorni, S.W. Hell: Coherent use of opposing lenses for axial resolution increase in fluorescence microscopy. II. Power and limitation of nonlinear image restoration, J. Opt. Soc. Am. A 18(1), 49–54 (2001)

    CAS  Google Scholar 

  38. S.W. Hell, E.H.K. Stelzer: Fundamental improvement of resolution with a 4Pi-confocal fluorescence microscope using two-photon excitation, Opt. Commun. 93, 277–282 (1992)

    Google Scholar 

  39. M. Schrader, S.W. Hell: 4Pi-confocal images with axial superresolution, J. Microsc. 183, 189–193 (1996)

    Google Scholar 

  40. M.G.L. Gustafsson: Extended resolution fluorescence microscopy, Curr. Opin. Struct. Biol. 9, 627–634 (1999)

    CAS  Google Scholar 

  41. M.G.L. Gustafsson, D.A. Agard, J.W. Sedat: 3D widefield light microscopy with better than 100 nm axial resolution, J. Microsc. 195, 10–16 (1999)

    CAS  Google Scholar 

  42. M.G.L. Gustafsson, D.A. Agard, J.W. Sedat: 3D widefield microscopy with two objective lenses: Experimental verification of improved axial resolution, Proc. SPIE (1996), https://doi.org/10.1117/12.237489

    Article  Google Scholar 

  43. K. Bahlmann, S. Jakobs, S.W. Hell: 4Pi-confocal microscopy of live cells, Ultramicroscopy 87, 155–164 (2001)

    CAS  Google Scholar 

  44. M.G.L. Gustafsson: Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy, J. Microsc. 198(2), 82–87 (2000)

    CAS  Google Scholar 

  45. T.J. Holmes: Maximum-likelihood image restoration adapted for non-coherent optical imaging, J. Opt. Soc. Am. A 5(5), 666–673 (1988)

    CAS  Google Scholar 

  46. W.A. Carrington, R.M. Lynch, E.D. Moore, G. Isenberg, K.E. Fogarty, F.S. Fay: Superresolution in three-dimensional images of fluorescence in cells with minimal light exposure, Science 268, 1483–1487 (1995)

    CAS  Google Scholar 

  47. T.J. Holmes, S. Bhattacharyya, J.A. Cooper, D. Hanzel, V. Krishnamurthi, W.-C. Lin, B. Roysam, D.H. Szarowski, J.N. Turner: Light microscopic images reconstruction by maximum likelihood deconvolution. In: Handbook of Biological Confocal Microscopy, ed. by J. Pawley (Plenum Press, New York 1995) pp. 389–400

    Google Scholar 

  48. M. Nagorni, S.W. Hell: 4Pi-confocal microscopy provides three-dimensional images of the microtubule network with 100- to 150-nm resolution, J. Struct. Biol. 123, 236–247 (1998)

    CAS  Google Scholar 

  49. S.W. Hell, M. Nagorni: 4Pi confocal microscopy with alternate interference, Opt. Lett. 23(20), 1567–1569 (1998)

    CAS  Google Scholar 

  50. B. Richards, E. Wolf: Electromagnetic diffraction in optical systems II. Structure of the image field in an aplanatic system, Proc. R. Soc. A 253, 358–379 (1959)

    Google Scholar 

  51. A. Schönle, S.W. Hell: Calculation of vectorial three-dimensional transfer functions in large-angle focusing systems, J. Opt. Soc. Am. A 19(10), 2121–2126 (2002)

    Google Scholar 

  52. C.J.R. Sheppard, Y. Kawata, S. Kawata, M. Gu: Three-dimensional transfer functions for high-aperture systems, J. Opt. Soc. Am. A 11(2), 593–596 (1993)

    Google Scholar 

  53. K. Bahlmann, S.W. Hell: Polarization effects in 4Pi confocal microscopy studied with water-immersion lenses, Appl. Opt. 39(10), 1652–1658 (2000)

    CAS  Google Scholar 

  54. S.W. Hell, M. Schrader, P.E. Hänninen, E. Soini: Resolving fluorescence beads at 100-200 nm distance with a two-photon 4Pi-microscope working in the near infrared, Opt. Commun. 120, 129–133 (1995)

    CAS  Google Scholar 

  55. M. Schrader, K. Bahlmann, G. Giese, S.W. Hell: 4Pi-confocal imaging in fixed biological specimens, Biophys. J. 75, 1659–1668 (1998)

    CAS  Google Scholar 

  56. W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flannery: Numerical Recipes in C: The Art of Scientific Computing, 2nd edn. (Cambridge Univ. Press, New York 1992)

    Google Scholar 

  57. M. Bertero, P. Boccacci, G.J. Brakenhoff, F. Malfanti, H.T.M. Voort: Three-dimensional image restoration and super-resolution in fluorescence confocal microscopy, J. Microsc. 157, 3–20 (1990)

    Google Scholar 

  58. B. Albrecht, A.V. Failla, A. Schweitzer, C. Cremer: Spatially modulated illumination microscopy allows axial distance resolution in the nanometer range, Appl. Opt. 41(1), 80–87 (2002)

    Google Scholar 

  59. B. Schneider, B. Albrecht, P. Jaeckle, D. Neofotistos, S. Soeding, T. Jager, C.G. Cremer: Nanolocalization measurements in spatially modulated illumination microscopy using two coherent illumination beams, Proc. SPIE 3921, 321–330 (2000)

    Google Scholar 

  60. M. Schmidt, M. Nagorni, S.W. Hell: Subresolution axial distance measurements in far-field fluorescence microscopy with precision of 1 nanometer, Rev. Sci. Instrum. 71, 2742–2745 (2000)

    CAS  Google Scholar 

  61. A.V. Failla, U. Spoeri, B. Albrecht, A. Kroll, C. Cremer: Nanosizing of fluorescent objects by spatially modulated illumination microscopy, Appl. Opt. 41(34), 7275–7283 (2002)

    Google Scholar 

  62. R. Heintzmann, C. Cremer: Laterally modulated excitation microscopy: Improvement of resolution by using a diffraction grating, Proc. SPIE 3568, 185–195 (1998)

    Google Scholar 

  63. C.M. Blanca, J. Bewersdorf, S.W. Hell: Determination of the unknown phase difference in 4Pi-confocal microscopy through the image intensity, Opt. Commun. 206, 281–285 (2002)

    Google Scholar 

  64. H. Gugel, J. Bewersdorf, S. Jakobs, J. Engelhardt, R. Storz, S.W. Hell: Cooperative 4Pi excitation and detection yields 7-fold sharper optical sections in live cell microscopy, Biophys. J. 87, 4146–4152 (2004)

    CAS  Google Scholar 

  65. M. Dyba, S.W. Hell: Focal spots of size \(\lambda\)/23 open up far-field fluorescence microscopy at 33 nm axial resolution, Phys. Rev. Lett. 88, 163901 (2002)

    Google Scholar 

  66. Y.R. Shen: The Principles of Nonlinear Optics, 1st edn. (John Wiley & Sons, New York 1984)

    Google Scholar 

  67. S.W. Hell: Strategy for far-field optical imaging and writing without diffraction limit, Phys. Lett. A 326(1-2), 140–145 (2004)

    CAS  Google Scholar 

  68. T.A. Klar, S. Jakobs, M. Dyba, A. Egner, S.W. Hell: Fluorescence microscopy with diffraction resolution limit broken by stimulated emission, Proc. Natl. Acad. Sci. USA 97, 8206–8210 (2000)

    CAS  Google Scholar 

  69. T.A. Klar, E. Engel, S.W. Hell: Breaking Abbe's diffraction resolution limit in fluorescence microscopy with stimulated emission depletion beams of various shapes, Phys. Rev. E 64, 066613 (2001)

    CAS  Google Scholar 

  70. J. Keller, A. Schönle, S.W. Hell: Efficient fluorescence inhibition patterns for RESOLFT microscopy, Opt. Express 15(6), 3361–3371 (2007)

    Google Scholar 

  71. K.I. Willig, S.O. Rizzoli, V. Westphal, R. Jahn, S.W. Hell: STED microscopy reveals that synaptotagmin remains clustered after synaptic vesicle exocytosis, Nature 440(7086), 935–939 (2006)

    CAS  Google Scholar 

  72. M. Dyba, S.W. Hell: Photostability of a fluorescent marker under pulsed excited-state depletion through stimulated emission, Appl. Opt. 42(25), 5123–5129 (2003)

    Google Scholar 

  73. L. Kastrup, S.W. Hell: Absolute optical cross section of individual fluorescent molecules, Angew. Chem. Int. Ed. 43, 6646–6649 (2004)

    CAS  Google Scholar 

  74. V. Westphal, C.M. Blanca, M. Dyba, L. Kastrup, S.W. Hell: Laser-diode-stimulated emission depletion microscopy, Appl. Phys. Lett. 82(18), 3125–3127 (2003)

    CAS  Google Scholar 

  75. M. Dyba, S. Jakobs, S.W. Hell: Immunofluorescence stimulated emission depletion microscopy, Nat. Biotechnol. 21(11), 1303–1304 (2003)

    CAS  Google Scholar 

  76. D. Magde, E.L. Elson, W.W. Webb: Thermodynamic fluctuations in a reacting system—Measurement by fluorescence correlation spectroscopy, Phys. Rev. Lett. 29(11), 705–708 (1972)

    CAS  Google Scholar 

  77. M. Eigen, R. Rigler: Sorting single molecules: Applications to diagnostics and evolutionary biotechnology, Proc. Natl. Acad. Sci. USA 91, 5740–5747 (1994)

    CAS  Google Scholar 

  78. E.L. Elson, R. Rigler (Eds.): Fluorescence Correlation Spectroscopy. Theory and Applications (Springer, Berlin 2001)

    Google Scholar 

  79. M.J. Levene, J. Korlach, S.W. Turner, M. Foquet, H.G. Craighead, W.W. Webb: Zero-mode waveguides for single-molecule analysis at high concentrations, Science 299, 682–686 (2003)

    CAS  Google Scholar 

  80. L. Kastrup, H. Blom, C. Eggeling, S.W. Hell: Fluorescence fluctuation spectroscopy in subdiffraction focal volumes, Phys. Rev. Lett. 94, 178104 (2005)

    Google Scholar 

  81. S. Weiss: Shattering the diffraction limit of light: A revolution in fluorescence microscopy?, Proc. Natl. Acad. Sci. USA 97(16), 8747–8749 (2000)

    CAS  Google Scholar 

  82. T.A. Laurence, S. Weiss: How to detect weak pairs, Science 299(5607), 667–668 (2003)

    CAS  Google Scholar 

  83. B. Harke, J. Keller, C.K. Ullal, V. Westphal, A. Schönle, S.W. Hell: Resolution scaling in STED microscopy, Opt. Express 16(6), 4154–4162 (2008)

    Google Scholar 

  84. S.W. Hell, R. Schmidt, A. Egner: Diffraction-unlimited three-dimensional optical nanoscopy with opposing lenses, Nat. Photonics 3, 381 (2009)

    CAS  Google Scholar 

  85. F. Göttfert, C.A. Wurm, V. Mueller, S. Berning, V.C. Cordes, A. Honigmann, S.W. Hell: Coaligned dual-channel STED nanoscopy and molecular diffusion analysis at 20 nm resolution, Biophys. J. 105(1), L01–L3 (2013)

    Google Scholar 

  86. S. Bretschneider, C. Eggeling, S.W. Hell: Breaking the diffraction barrier in fluorescence microscopy by optical shelving, Phys. Rev. Lett. 98(21), 218103 (2007)

    Google Scholar 

  87. E. Rittweger, D. Wildanger, S.W. Hell: Far-field fluorescence nanoscopy of diamond color centers by ground state depletion, Europhys. Lett. 86(1), 14001 (2009)

    Google Scholar 

  88. M.G.L. Gustafsson: Nonlinear structured-illumination microscopy: Wide-field fluorescence imaging with theoretically unlimited resolution, Proc. Natl. Acad. Sci. USA 102(37), 13081–13086 (2005)

    CAS  Google Scholar 

  89. J. Oracz, K. Adolfsson, V. Westphal, C. Radzewicz, M.T. Borgström, S.J. Sahl, C.N. Prinz, S.W. Hell: Ground state depletion nanoscopy resolves semiconductor nanowire barcode segments at room temperature, Nano Lett. 17(4), 2652–2659 (2017)

    CAS  Google Scholar 

  90. R.J. Kittel, C. Wichmann, T.M. Rasse, W. Fouquet, M. Schmidt, A. Schmid, D.A. Wagh, C. Pawlu, R.R. Kellner, K.I. Willig, S.W. Hell, E. Buchner, M. Heckmann, S.J. Sigrist: Bruchpilot promotes active zone assembly, Ca2+ channel clustering, and vesicle release, Science 312(5776), 1051–1054 (2006)

    CAS  Google Scholar 

  91. J.J. Sieber, K.I. Willig, R. Heintzmann, S.W. Hell, T. Lang: The SNARE motif is essential for the formation of syntaxin clusters in the plasma membrane, Biophys. J. 90(8), 2843–2851 (2006)

    CAS  Google Scholar 

  92. G. Donnert, J. Keller, R. Medda, M.A. Andrei, S.O. Rizzoli, R. Lührmann, R. Jahn, C. Eggeling, S.W. Hell: Macromolecular-scale resolution in biological fluorescence microscopy, Proc. Natl. Acad. Sci. USA 103(31), 11440–11445 (2006)

    CAS  Google Scholar 

  93. R.R. Kellner, C.J. Baier, K.I. Willig, S.W. Hell, F.J. Barrantes: Nanoscale organization of nicotinic acetylcholine receptors revealed by stimulated emission depletion microscopy, Neuroscience 144(1), 135–143 (2007)

    CAS  Google Scholar 

  94. R. Schmidt, C.A. Wurm, S. Jakobs, J. Engelhardt, A. Egner, S.W. Hell: Spherical nanosized focal spot unravels the interior of cells, Nat. Methods 5(6), 539–544 (2008)

    CAS  Google Scholar 

  95. V. Westphal, M.A. Lauterbach, A. Di Nicola, S.W. Hell: Dynamic far-field fluorescence nanoscopy, New J. Phys. 9, 435 (2007)

    Google Scholar 

  96. V. Westphal, S.O. Rizzoli, M.A. Lauterbach, D. Kamin, R. Jahn, S.W. Hell: Video-rate far-field optical nanoscopy dissects synaptic vesicle movement, Science 320(5873), 246–249 (2008)

    CAS  Google Scholar 

  97. C. Eggeling, C. Ringemann, R. Medda, G. Schwarzmann, K. Sandhoff, S. Polyakova, V.N. Belov, B. Hein, C. von Middendorff, A. Schönle, S.W. Hell: Direct observation of the nanoscale dynamics of membrane lipids in a living cell, Nature 457(7233), 1159–1162 (2009)

    CAS  Google Scholar 

  98. S.J. Sahl, M. Leutenegger, M. Hilbert, S.W. Hell, C. Eggeling: Fast molecular tracking maps nanoscale dynamics of plasma membrane lipids, Proc. Natl. Acad. Sci. USA 107(15), 6829–6834 (2010)

    CAS  Google Scholar 

  99. S.J. Sahl, M. Leutenegger, S.W. Hell, C. Eggeling: High-resolution tracking of single-molecule diffusion in membranes by confocalized and spatially differentiated fluorescence photon stream recording, ChemPhysChem 15(4), 771–783 (2014)

    CAS  Google Scholar 

  100. B. Hein, K.I. Willig, S.W. Hell: Stimulated emission depletion (STED) nanoscopy of a fluorescent protein-labeled organelle inside a living cell, Proc. Natl. Acad. Sci. USA 105(38), 14271–14276 (2008)

    CAS  Google Scholar 

  101. U.V. Nägerl, K.I. Willig, B. Hein, S.W. Hell, T. Bonhoeffer: Live-cell imaging of dendritic spines by STED microscopy, Proc. Natl. Acad. Sci. USA 105(48), 18982–18987 (2008)

    Google Scholar 

  102. K.I. Willig, J. Keller, M. Bossi, S.W. Hell: STED microscopy resolves nanoparticle assemblies, New J. Phys. 8(6), 106 (2006)

    Google Scholar 

  103. B. Harke, C.K. Ullal, J. Keller, S.W. Hell: Three-dimensional nanoscopy of colloidal crystals, Nano Lett. 8(5), 1309–1313 (2008)

    CAS  Google Scholar 

  104. E. Rittweger, K.Y. Han, S.E. Irvine, C. Eggeling, S.W. Hell: STED microscopy reveals crystal colour centres with nanometric resolution, Nat. Photonics 3, 144–147 (2009)

    CAS  Google Scholar 

  105. C.-C. Fu, H.-Y. Lee, K. Chen, T.-S. Lim, H.-Y. Wu, P.-K. Lin, P.-K. Wei, P.-H. Tsao, H.-C. Chang, W. Fann: Characterization and application of single fluorescent nanodiamonds as cellular biomarkers, Proc. Natl. Acad. Sci. USA 104(3), 727–732 (2007)

    CAS  Google Scholar 

  106. C. Eggeling, K.I. Willig, S.J. Sahl, S.W. Hell: Lens-based fluorescence nanoscopy, Q. Rev. Biophys. 48(2), 178–243 (2015)

    CAS  Google Scholar 

  107. M. Irie, T. Fukaminato, T. Sasaki, N. Tamai, T. Kawai: A digital fluorescent molecular photoswitch, Nature 420(6917), 759–760 (2002)

    CAS  Google Scholar 

  108. J. Oracz, V. Westphal, C. Radzewicz, S.J. Sahl, S.W. Hell: Photobleaching in STED nanoscopy and its dependence on the photon flux applied for reversible silencing of the fluorophore, Sci. Rep. 7(1), 11354 (2017)

    Google Scholar 

  109. K.A. Lukyanov, A.F. Fradkov, N.G. Gurskaya, M.V. Matz, Y.A. Labas, A.P. Savitsky, M.L. Markelov, A.G. Zaraisky, X. Zhao, Y. Fang, W. Tan, S.A. Lukyanov: Natural animal coloration can be determined by a nonfluorescent green fluorescent protein homolog, J. Biol. Chem. 275(34), 25879–25882 (2000)

    CAS  Google Scholar 

  110. T. Grotjohann, I. Testa, M. Leutenegger, H. Bock, N.T. Urban, F. Lavoie-Cardinal, K.I. Willig, C. Eggeling, S. Jakobs, S.W. Hell: Diffraction-unlimited all-optical imaging and writing with a photochromic GFP, Nature 478(7368), 204–208 (2011)

    CAS  Google Scholar 

  111. J. Schneider, J. Zahn, M. Maglione, S.J. Sigrist, J. Marquard, J. Chojnacki, H.-G. Kräusslich, S.J. Sahl, J. Engelhardt, S.W. Hell: Ultrafast, temporally stochastic STED nanoscopy of millisecond dynamics, Nat. Methods 12(9), 827–830 (2015)

    CAS  Google Scholar 

  112. P. Hoyer, G. de Medeiros, B. Balázs, N. Norlin, C. Besir, J. Hanne, H.-G. Kräusslich, J. Engelhardt, S.J. Sahl, S.W. Hell, L. Hufnagel: Breaking the diffraction limit of light-sheet fluorescence microscopy by RESOLFT, Proc. Natl. Acad. Sci. USA 113(13), 3442–3446 (2016)

    CAS  Google Scholar 

  113. J. Hanne, H.J. Falk, F. Görlitz, P. Hoyer, J. Engelhardt, S.J. Sahl, S.W. Hell: STED nanoscopy with fluorescent quantum dots, Nat. Commun. 6, 7127 (2015)

    CAS  Google Scholar 

  114. F. Curdt, S.J. Herr, T. Lutz, R. Schmidt, J. Engelhardt, S.J. Sahl, S.W. Hell: isoSTED nanoscopy with intrinsic beam alignment, Opt. Express 23(24), 30891–30903 (2015)

    Google Scholar 

  115. A. Chmyrov, J. Keller, T. Grotjohann, M. Ratz, E. d'Este, S. Jakobs, C. Eggeling, S.W. Hell: Nanoscopy with more than 100,000 'doughnuts', Nat. Methods 10(8), 737–740 (2013)

    CAS  Google Scholar 

  116. F. Bergermann, L. Alber, S.J. Sahl, J. Engelhardt, S.W. Hell: 2000-fold parallelized dual-color STED fluorescence nanoscopy, Opt. Express 23(1), 211–223 (2015)

    Google Scholar 

  117. A. Chmyrov, M. Leutenegger, T. Grotjohann, A. Schönle, J. Keller-Findeisen, L. Kastrup, S. Jakobs, G. Donnert, S.J. Sahl, S.W. Hell: Achromatic light patterning and improved image reconstruction for parallelized RESOLFT nanoscopy, Sci. Rep. 7, 44619 (2017)

    CAS  Google Scholar 

  118. F.R. Winter, M. Loidolt, V. Westphal, A.N. Butkevich, C. Gregor, S.J. Sahl, S.W. Hell: Multicolour nanoscopy of fixed and living cells with a single STED beam and hyperspectral detection, Sci. Rep. 7, 46492 (2017)

    CAS  Google Scholar 

  119. W.E. Moerner, L. Kador: Optical detection and spectroscopy of single molecules in a solid, Phys. Rev. Lett. 62(21), 2535–2538 (1989)

    CAS  Google Scholar 

  120. R.M. Dickson, A.B. Cubitt, R.Y. Tsien, W.E. Moerner: On/off blinking and switching behaviour of single molecules of green fluorescent protein, Nature 388(6640), 355–358 (1997)

    CAS  Google Scholar 

  121. E. Betzig, G.H. Patterson, R. Sougrat, O.W. Lindwasser, S. Olenych, J.S. Bonifacino, M.W. Davidson, J. Lippincott-Schwartz, H.F. Hess: Imaging intracellular fluorescent proteins at nanometer resolution, Science 313(5793), 1642–1645 (2006)

    CAS  Google Scholar 

  122. K. Xu, G. Zhong, X. Zhuang: Actin, spectrin, and associated proteins form a periodic cytoskeletal structure in axons, Science 339(6118), 452–456 (2013)

    CAS  Google Scholar 

  123. B. Huang, S.A. Jones, B. Brandenburg, X. Zhuang: Whole-cell 3D STORM reveals interactions between cellular structures with nanometer-scale resolution, Nat. Methods 5(12), 1047–1052 (2008)

    CAS  Google Scholar 

  124. K. Xu, H.P. Babcock, X. Zhuang: Dual-objective STORM reveals three-dimensional filament organization in the actin cytoskeleton, Nat. Methods 9(2), 185–188 (2012)

    CAS  Google Scholar 

  125. A. Sharonov, R.M. Hochstrasser: Wide-field subdiffraction imaging by accumulated binding of diffusing probes, Proc. Natl. Acad. Sci. USA 103(50), 18911–18916 (2006)

    CAS  Google Scholar 

  126. R. Jungmann, M.S. Avendaño, J.B. Woehrstein, M. Dai, W.M. Shih, P. Yin: Multiplexed 3D cellular super-resolution imaging with DNA-PAINT and Exchange-PAINT, Nat. Methods 11(3), 313–318 (2014)

    CAS  Google Scholar 

  127. J. Fölling, M. Bossi, H. Bock, R. Medda, C.A. Wurm, B. Hein, S. Jakobs, C. Eggeling, S.W. Hell: Fluorescence nanoscopy by ground-state depletion and single-molecule return, Nat. Methods 5(11), 943–945 (2008)

    Google Scholar 

  128. R.E. Thompson, D.R. Larson, W.W. Webb: Precise nanometer localization analysis for individual fluorescent probes, Biophys. J. 82(5), 2775–2783 (2002)

    CAS  Google Scholar 

  129. S.W. Hell: Far-field optical nanoscopy, Science 316(5828), 1153–1158 (2007)

    CAS  Google Scholar 

  130. S.W. Hell: Far-field optical nanoscopy. In: Single Molecule Spectroscopy in Chemistry, Physics and Biology, Springer Series in Chemical Physics, Vol. 96, ed. by A. Gräslund, R. Rigler, J. Widengren (Springer, Berlin 2009) pp. 298–365

    Google Scholar 

  131. S.T. Hess, T.P.K. Girirajan, M.D. Mason: Ultra-high resolution imaging by fluorescence photoactivation localization microscopy, Biophys. J. 91(11), 4258–4272 (2006)

    CAS  Google Scholar 

  132. M.J. Rust, M. Bates, X. Zhuang: Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM), Nat. Methods 3(10), 793–796 (2006)

    CAS  Google Scholar 

  133. G.H. Patterson, J. Lippincott-Schwartz: A photoactivatable GFP for selective photolabeling of proteins and cells, Science 297(5588), 1873–1877 (2002)

    CAS  Google Scholar 

  134. J. Fölling, V. Belov, R. Kunetsky, R. Medda, A. Schönle, A. Egner, C. Eggeling, M. Bossi, S.W. Hell: Photochromic rhodamines provide nanoscopy with optical sectioning, Angew. Chem. Int. Ed. 46(33), 6266–6270 (2007)

    Google Scholar 

  135. J. Fölling, V. Belov, D. Riedel, A. Schönle, A. Egner, C. Eggeling, M. Bossi, S.W. Hell: Fluorescence nanoscopy with optical sectioning by two-photon induced molecular switching using continuous-wave lasers, ChemPhysChem 9(2), 321–326 (2008)

    Google Scholar 

  136. M. Bates, T.R. Blosser, X. Zhuang: Short-range spectroscopic ruler based on a single-molecule optical switch, Phys. Rev. Lett. 94(10), 108101 (2005)

    Google Scholar 

  137. H. Bock, C. Geisler, C.A. Wurm, C. von Middendorff, S. Jakobs, A. Schönle, A. Egner, S.W. Hell, C. Eggeling: Two-color far-field fluorescence nanoscopy based on photoswitchable emitters, Appl. Phys. B 88(2), 161–165 (2007)

    CAS  Google Scholar 

  138. M. Heilemann, S. van de Linde, M. Schüttpelz, R. Kasper, B. Seefeldt, A. Mukherjee, P. Tinnefeld, M. Sauer: Subdiffraction-resolution fluorescence imaging with conventional fluorescent probes, Angew. Chem. Int. Ed. 47(33), 6172–6176 (2008)

    CAS  Google Scholar 

  139. C. Steinhauer, C. Forthmann, J. Vogelsang, P. Tinnefeld: Superresolution microscopy on the basis of engineered dark states, J. Am. Chem. Soc. 130(50), 16840–16841 (2008)

    CAS  Google Scholar 

  140. S. van de Linde, R. Kasper, M. Heilemann, M. Sauer: Photoswitching microscopy with standard fluorophores, Appl. Phys. B 93(4), 725 (2008)

    Google Scholar 

  141. A. Egner, C. Geisler, C. von Middendorff, H. Bock, D. Wenzel, R. Medda, M. Andresen, A.C. Stiel, S. Jakobs, C. Eggeling, A. Schönle, S.W. Hell: Fluorescence nanoscopy in whole cells by asynchronous localization of photoswitching emitters, Biophys. J. 93(9), 3285–3290 (2007)

    CAS  Google Scholar 

  142. C. Geisler, A. Schönle, C. von Middendorff, H. Bock, C. Eggeling, A. Egner, S.W. Hell: Resolution of \(\lambda\)/10 in fluorescence microscopy using fast single molecule photo-switching, Appl. Phys. A 88(2), 223–226 (2007)

    CAS  Google Scholar 

  143. U. Endesfelder, S. van de Linde, S. Wolter, M. Sauer, M. Heilemann: Subdiffraction-resolution fluorescence microscopy of myosin–actin motility, ChemPhysChem 11(4), 836–840 (2010)

    CAS  Google Scholar 

  144. S.A. Jones, S.H. Shim, J. He, X. Zhuang: Fast, three-dimensional super-resolution imaging of live cells, Nat. Methods 8(6), 499–505 (2011)

    CAS  Google Scholar 

  145. H. Shroff, C.G. Galbraith, J.A. Galbraith, E. Betzig: Live-cell photoactivated localization microscopy of nanoscale adhesion dynamics, Nat. Methods 5(5), 417–423 (2008)

    CAS  Google Scholar 

  146. A.C. Stiel, M. Andresen, H. Bock, M. Hilbert, J. Schilde, A. Schönle, C. Eggeling, A. Egner, S.W. Hell, S. Jakobs: Generation of monomeric reversibly switchable red fluorescent proteins for far-field fluorescence nanoscopy, Biophys. J. 95(6), 2989–2997 (2008)

    CAS  Google Scholar 

  147. L. Cognet, D.A. Tsyboulski, R.B. Weisman: Subdiffraction far-field imaging of luminescent single-walled carbon nanotubes, Nano Lett. 8(2), 749–753 (2008)

    CAS  Google Scholar 

  148. P. Hoyer, T. Staudt, J. Engelhardt, S.W. Hell: Quantum dot blueing and blinking enables fluorescence nanoscopy, Nano Lett. 11(1), 245–250 (2011)

    CAS  Google Scholar 

  149. J.S. Biteen, M.A. Thompson, N.K. Tselentis, G.R. Bowman, L. Shapiro, W.E. Moerner: Super-resolution imaging in live Caulobacter crescentus cells using photoswitchable EYFP, Nat. Methods 5, 947–949 (2008)

    CAS  Google Scholar 

  150. S.J. Sahl, W.E. Moerner: Super-resolution fluorescence imaging with single molecules, Curr. Opin. Struct. Biol. 23(5), 778–787 (2013)

    CAS  Google Scholar 

  151. J. Bierwagen, I. Testa, J. Fölling, D. Wenzel, S. Jakobs, C. Eggeling, S.W. Hell: Far-field autofluorescence nanoscopy, Nano Lett. 10(10), 4249–4252 (2010)

    CAS  Google Scholar 

  152. B. Huang, W. Wang, M. Bates, X. Zhuang: Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy, Science 319(5864), 810–813 (2008)

    CAS  Google Scholar 

  153. S.R.P. Pavani, M.A. Thompson, J.S. Biteen, S.J. Lord, N. Liu, R.J. Twieg, R. Piestun, W.E. Moerner: Three-dimensional, single-molecule fluorescence imaging beyond the diffraction limit by using a double-helix point spread function, Proc. Natl. Acad. Sci. USA 106(9), 2995–2999 (2009)

    CAS  Google Scholar 

  154. H.-I.D. Lee, S.J. Sahl, M.D. Lew, W.E. Moerner: The double-helix microscope super-resolves extended biological structures by localizing single blinking molecules in three dimensions with nanoscale precision, Appl. Phys. Lett. 100(15), 153701 (2012)

    Google Scholar 

  155. Y. Shechtman, S.J. Sahl, A.S. Backer, W.E. Moerner: Optimal point spread function design for 3D imaging, Phys. Rev. Lett. 113(13), 133902 (2014)

    Google Scholar 

  156. Y. Shechtman, L.E. Weiss, A.S. Backer, S.J. Sahl, W.E. Moerner: Precise three-dimensional scan-free multiple-particle tracking over large axial ranges with tetrapod point spread functions, Nano Lett. 15(6), 4194–4199 (2015)

    CAS  Google Scholar 

  157. Y. Shechtman, L.E. Weiss, A.S. Backer, M.Y. Lee, W.E. Moerner: Multicolour localization microscopy by point-spread-function engineering, Nat. Photonics 10(9), 590–594 (2016)

    CAS  Google Scholar 

  158. M.P. Backlund, M.D. Lew, A.S. Backer, S.J. Sahl, G. Grover, A. Agrawal, R. Piestun, W.E. Moerner: Simultaneous, accurate measurement of the 3D position and orientation of single molecules, Proc. Natl. Acad. Sci. USA 109(47), 19087–19092 (2012)

    CAS  Google Scholar 

  159. M.P. Backlund, M.D. Lew, A.S. Backer, S.J. Sahl, W.E. Moerner: The role of molecular dipole orientation in single-molecule fluorescence microscopy and implications for super-resolution imaging, ChemPhysChem 15(4), 587–599 (2014)

    CAS  Google Scholar 

  160. A.S. Backer, M.Y. Lee, W.E. Moerner: Enhanced DNA imaging using super-resolution microscopy and simultaneous single-molecule orientation measurements, Optica 3(6), 659–666 (2016)

    CAS  Google Scholar 

  161. A.S. Backer, M.P. Backlund, A.R. von Diezmann, S.J. Sahl, W.E. Moerner: Abisected pupil for studying single-molecule orientational dynamics and its application to three-dimensional super-resolution microscopy, Appl. Phys. Lett. 104(19), 193701 (2014)

    Google Scholar 

  162. A.S. Backer, M.P. Backlund, M.D. Lew, W.E. Moerner: Single-molecule orientation measurements with a quadrated pupil, Opt. Lett. 38(9), 1521–1523 (2013)

    Google Scholar 

  163. S.J. Sahl, S.W. Hell, S. Jakobs: Fluorescence nanoscopy in cell biology, Nat. Rev. Mol. Cell Biol. 18, 685–701 (2017)

    CAS  Google Scholar 

  164. G. Komis, O. Šamajová, M. Ovečka, J. Šamaj: Super-resolution microscopy in plant cell imaging, Trends Plant Sci. 20(12), 834–843 (2015)

    CAS  Google Scholar 

  165. D.J. Williamson, D.M. Owen, J. Rossy, A. Magenau, M. Wehrmann, J.J. Gooding, K. Gaus: Pre-existing clusters of the adaptor Lat do not participate in early T cell signaling events, Nat. Immunol. 12(7), 655–662 (2011)

    CAS  Google Scholar 

  166. B. Dudok, L. Barna, M. Ledri, S.I. Szabó, E. Szabadits, B. Pintér, S.G. Woodhams, C.M. Henstridge, G.Y. Balla, R. Nyilas, C. Varga, S.-H. Lee, M. Matolcsi, J. Cervenak, I. Kacskovics, M. Watanabe, C. Sagheddu, M. Melis, M. Pistis, I. Soltesz, I. Katona: Cell-specific STORM super-resolution imaging reveals nanoscale organization of cannabinoid signaling, Nat. Neurosci. 18(1), 75–86 (2015)

    CAS  Google Scholar 

  167. L. Lau, Y.L. Lee, S.J. Sahl, T. Stearns, W.E. Moerner: STED microscopy with optimized labeling density reveals 9-fold arrangement of a centriole protein, Biophys. J. 102(12), 2926–2935 (2012)

    CAS  Google Scholar 

  168. J. Chojnacki, T. Staudt, B. Glass, P. Bingen, J. Engelhardt, M. Anders, J. Schneider, B. Müller, S.W. Hell, H.-G. Kräusslich: Maturation-dependent HIV-1 surface protein redistribution revealed by fluorescence nanoscopy, Science 338(6106), 524–528 (2012)

    CAS  Google Scholar 

  169. S.B. Van Engelenburg, G. Shtengel, P. Sengupta, K. Waki, M. Jarnik, S.D. Ablan, E.O. Freed, H.F. Hess, J. Lippincott-Schwartz: Distribution of ESCRT machinery at HIV assembly sites reveals virus scaffolding of ESCRT subunits, Science 343(6171), 653–656 (2014)

    Google Scholar 

  170. M. Bleck, M.S. Itano, D.S. Johnson, V.K. Thomas, A.J. North, P.D. Bieniasz, S.M. Simon: Temporal and spatial organization of ESCRT protein recruitment during HIV-1 budding, Proc. Natl. Acad. Sci. USA 111(33), 12211–12216 (2014)

    CAS  Google Scholar 

  171. J. Prescher, V. Baumgärtel, S. Ivanchenko, A.A. Torrano, C. Bräuchle, B. Müller, D.C. Lamb: Super-resolution imaging of ESCRT-proteins at HIV-1 assembly sites, PLoS Pathogens 11(2), e1004677 (2015)

    CAS  Google Scholar 

  172. J. Hanne, F. Göttfert, J. Schimer, M. Anders-Össwein, J. Konvalinka, J. Engelhardt, B. Müller, S.W. Hell, H.-G. Kräusslich: Stimulated emission depletion nanoscopy reveals time-course of human immunodeficiency virus proteolytic maturation, ACS Nano 10(9), 8215–8222 (2016)

    CAS  Google Scholar 

  173. A. Gahlmann, W.E. Moerner: Exploring bacterial cell biology with single-molecule tracking and super-resolution imaging, Nat. Rev. Microbiol. 12(1), 9–22 (2014)

    CAS  Google Scholar 

  174. C. Chen, S. Zong, Z. Wang, J. Lu, D. Zhu, Y. Zhang, Y. Cui: Imaging and intracellular tracking of cancer-derived exosomes using single-molecule localization-based super-resolution microscope, ACS Appl. Mater. Interfaces 8(39), 25825–25833 (2016)

    CAS  Google Scholar 

  175. P. Ilgen, S. Stoldt, L.C. Conradi, C.A. Wurm, J. Ruschoff, B.M. Ghadimi, T. Liersch, S. Jakobs: STED super-resolution microscopy of clinical paraffin-embedded human rectal cancer tissue, PLoS One 9(7), e101563 (2014)

    Google Scholar 

  176. A. Benda, H. Aitken, D.S. Davies, R. Whan, C. Goldsbury: STED imaging of tau filaments in Alzheimer's disease cortical grey matter, J. Struct. Biol. 195(3), 345–352 (2016)

    CAS  Google Scholar 

  177. S.W. Hell, S.J. Sahl, M. Bates, X. Zhuang, R. Heintzmann, M.J. Booth, J. Bewersdorf, G. Shtengel, H. Hess, P. Tinnefeld, A. Honigmann, S. Jakobs, I. Testa, L. Cognet, B. Lounis, H. Ewers, S.J. Davis, C. Eggeling, D. Klenerman, K.I. Willig, G. Vicidomini, M. Castello, A. Diaspro, T. Cordes: The 2015 super-resolution microscopy roadmap, J. Phys. D 48(44), 443001 (2015)

    Google Scholar 

  178. A. Löschberger, S. van de Linde, M.C. Dabauvalle, B. Rieger, M. Heilemann, G. Krohne, M. Sauer: Super-resolution imaging visualizes the eightfold symmetry of gp210 proteins around the nuclear pore complex and resolves the central channel with nanometer resolution, J. Cell Sci. 125(3), 570–575 (2012)

    Google Scholar 

  179. A. Szymborska, A. de Marco, N. Daigle, V.C. Cordes, J.A. Briggs, J. Ellenberg: Nuclear pore scaffold structure analyzed by super-resolution microscopy and particle averaging, Science 341(6146), 655–658 (2013)

    CAS  Google Scholar 

  180. J. Broeken, H. Johnson, D.S. Lidke, S. Liu, R.P. Nieuwenhuizen, S. Stallinga, K.A. Lidke, B. Rieger: Resolution improvement by 3D particle averaging in localization microscopy, Methods Appl. Fluoresc. 3(1), 014003 (2015)

    Google Scholar 

  181. T.T. Yang, J. Su, W.J. Wang, B. Craige, G.B. Witman, M.F. Tsou, J.C. Liao: Superresolution pattern recognition reveals the architectural map of the ciliary transition zone, Sci. Rep. 5, 14096 (2015)

    CAS  Google Scholar 

  182. R.F. Laine, A. Albecka, S. van de Linde, E.J. Rees, C.M. Crump, C.F. Kaminski: Structural analysis of herpes simplex virus by optical super-resolution imaging, Nat. Commun. 6, 5980 (2015)

    CAS  Google Scholar 

  183. G. Zhong, J. He, R. Zhou, D. Lorenzo, H.P. Babcock, V. Bennett, X. Zhuang: Developmental mechanism of the periodic membrane skeleton in axons, eLife 3, e04581 (2014)

    Google Scholar 

  184. E. D'Este, D. Kamin, F. Göttfert, A. El-Hady, S.W. Hell: STED nanoscopy reveals the ubiquity of subcortical cytoskeleton periodicity in living neurons, Cell Rep. 10(8), 1246–1251 (2015)

    CAS  Google Scholar 

  185. S.C. Sidenstein, E. D'Este, M.J. Böhm, J.G. Danzl, V.N. Belov, S.W. Hell: Multicolour multilevel STED nanoscopy of actin/spectrin organization at synapses, Sci. Rep. 6, 26725 (2016)

    CAS  Google Scholar 

  186. J. Bär, O. Kobler, B. van Bommel, M. Mikhaylova: Periodic F-actin structures shape the neck of dendritic spines, Sci. Rep. 6, 37136 (2016)

    Google Scholar 

  187. C. Leterrier, J. Potier, G. Caillol, C. Debarnot, F. Rueda Boroni, B. Dargent: Nanoscale architecture of the axon initial segment reveals an organized and robust scaffold, Cell Rep. 13(12), 2781–2793 (2015)

    CAS  Google Scholar 

  188. S.C. Leite, P. Sampaio, V.F. Sousa, J. Nogueira-Rodrigues, R. Pinto-Costa, L.L. Peters, P. Brites, M.M. Sousa: The actin-binding protein \(\alpha\)-adducin is required for maintaining axon diameter, Cell Rep. 15(3), 490–498 (2016)

    CAS  Google Scholar 

  189. G. Lukinavičius, L. Reymond, E. D'Este, A. Masharina, F. Göttfert, H. Ta, A. Güther, M. Fournier, S. Rizzo, H. Waldmann, C. Blaukopf, C. Sommer, D.W. Gerlich, H.D. Arndt, S.W. Hell, K. Johnsson: Fluorogenic probes for live-cell imaging of the cytoskeleton, Nat. Methods 11(7), 731–733 (2014)

    Google Scholar 

  190. E. D'Este, D. Kamin, C. Velte, F. Göttfert, M. Simons, S.W. Hell: Subcortical cytoskeleton periodicity throughout the nervous system, Sci. Rep. 6, 22741 (2016)

    CAS  Google Scholar 

  191. J. He, R. Zhou, Z. Wu, M.A. Carrasco, P.T. Kurshan, J.E. Farley, D.J. Simon, G. Wang, B. Han, J. Hao, E. Heller, M.R. Freeman, K. Shen, T. Maniatis, M. Tessier-Lavigne, X. Zhuang: Prevalent presence of periodic actin-spectrin-based membrane skeleton in a broad range of neuronal cell types and animal species, Proc. Natl. Acad. Sci. USA 113(21), 6029–6034 (2016)

    CAS  Google Scholar 

  192. D. Albrecht, C.M. Winterflood, M. Sadeghi, T. Tschager, F. Noé, H. Ewers: Nanoscopic compartmentalization of membrane protein motion at the axon initial segment, J. Cell Biol. 215, 37–46 (2016)

    CAS  Google Scholar 

  193. E. D'Este, D. Kamin, F. Balzarotti, S.W. Hell: Ultrastructural anatomy of nodes of Ranvier in the peripheral nervous system as revealed by STED microscopy, Proc. Natl. Acad. Sci. USA 114(2), E191–E199 (2017)

    CAS  Google Scholar 

  194. B.G. Wilhelm, S. Mandad, S. Truckenbrodt, K. Kröhnert, C. Schäfer, B. Rammner, S.J. Koo, G.A. Claßen, M. Krauss, V. Haucke, H. Urlaub, S.O. Rizzoli: Composition of isolated synaptic boutons reveals the amounts of vesicle trafficking proteins, Science 344(6187), 1023–1028 (2014)

    CAS  Google Scholar 

  195. A. Chazeau, G. Giannone: Organization and dynamics of the actin cytoskeleton during dendritic spine morphological remodeling, Cell. Mol. Life Sci. 73(16), 3053–3073 (2016)

    CAS  Google Scholar 

  196. N. Ehmann, M. Sauer, R.J. Kittel: Super-resolution microscopy of the synaptic active zone, Front. Cell. Neurosci. 9, 7 (2015)

    Google Scholar 

  197. W. Fouquet, D. Owald, C. Wichmann, S. Mertel, H. Depner, M. Dyba, S. Hallermann, R.J. Kittel, S. Eimer, S.J. Sigrist: Maturation of active zone assembly by Drosophila Bruchpilot, J. Cell Biol. 186(1), 129–145 (2009)

    CAS  Google Scholar 

  198. D. Owald, W. Fouquet, M. Schmidt, C. Wichmann, S. Mertel, H. Depner, F. Christiansen, C. Zube, C. Quentin, J. Körner, H. Urlaub, K. Mechtler, S.J. Sigrist: A Syd-1 homologue regulates pre- and postsynaptic maturation in Drosophila, J. Cell Biol. 188(4), 565–579 (2010)

    CAS  Google Scholar 

  199. K.S. Liu, M. Siebert, S. Mertel, E. Knoche, S. Wegener, C. Wichmann, T. Matkovic, K. Muhammad, H. Depner, C. Mettke, J. Bückers, S.W. Hell, M. Müller, G.W. Davis, D. Schmitz, S.J. Sigrist: RIM-binding protein, a central part of the active zone, is essential for neurotransmitter release, Science 334(6062), 1565–1569 (2011)

    CAS  Google Scholar 

  200. N. Ehmann, S. van de Linde, A. Alon, D. Ljaschenko, X.Z. Keung, T. Holm, A. Rings, A. DiAntonio, S. Hallermann, U. Ashery, M. Heckmann, M. Sauer, R.J. Kittel: Quantitative super-resolution imaging of Bruchpilot distinguishes active zone states, Nat. Commun. 5, 4650 (2014)

    CAS  Google Scholar 

  201. H. Nishimune, Y. Badawi, S. Mori, K. Shigemoto: Dual-color STED microscopy reveals a sandwich structure of Bassoon and Piccolo in active zones of adult and aged mice, Sci. Rep. 6, 27935 (2016)

    CAS  Google Scholar 

  202. I. Chamma, M. Letellier, C. Butler, B. Tessier, K.-H. Lim, I. Gauthereau, D. Choquet, J.B. Sibarita, S. Park, M. Sainlos, O. Thoumine: Mapping the dynamics and nanoscale organization of synaptic adhesion proteins using monomeric streptavidin, Nat. Commun. 7, 10773 (2016)

    CAS  Google Scholar 

  203. A. Dani, B. Huang, J. Bergan, C. Dulac, X. Zhuang: Superresolution imaging of chemical synapses in the brain, Neuron 68(5), 843–856 (2010)

    CAS  Google Scholar 

  204. N. Hoze, D. Nair, E. Hosy, C. Sieben, S. Manley, A. Herrmann, J.-B. Sibarita, D. Choquet, D. Holcman: Heterogeneity of AMPA receptor trafficking and molecular interactions revealed by superresolution analysis of live cell imaging, Proc. Natl. Acad. Sci. USA 109(42), 17052–17057 (2012)

    CAS  Google Scholar 

  205. H.D. MacGillavry, Y. Song, S. Raghavachari, T.A. Blanpied: Nanoscale scaffolding domains within the postsynaptic density concentrate synaptic AMPA receptors, Neuron 78(4), 615–622 (2013)

    CAS  Google Scholar 

  206. Y. Fukata, A. Dimitrov, G. Boncompain, O. Vielemeyer, F. Perez, M. Fukata: Local palmitoylation cycles define activity-regulated postsynaptic subdomains, J. Cell Biol. 202(1), 145–161 (2013)

    CAS  Google Scholar 

  207. D. Nair, E. Hosy, J.D. Petersen, A. Constals, G. Giannone, D. Choquet, J.-B. Sibarita: Super-resolution imaging reveals that AMPA receptors inside synapses are dynamically organized in nanodomains regulated by PSD95, J. Neurosci. 33(32), 13204–13224 (2013)

    CAS  Google Scholar 

  208. A.-H. Tang, H. Chen, T.P. Li, S.R. Metzbower, H.D. MacGillavry, T.A. Blanpied: A trans-synaptic nanocolumn aligns neurotransmitter release to receptors, Nature 536(7615), 210–214 (2016)

    CAS  Google Scholar 

  209. I. Izeddin, C.G. Specht, M. Lelek, X. Darzacq, A. Triller, C. Zimmer, M. Dahan: Super-resolution dynamic imaging of dendritic spines using a low-affinity photoconvertible actin probe, PLoS One 6(1), e15611 (2011)

    CAS  Google Scholar 

  210. N.T. Urban, K.I. Willig, S.W. Hell, U.V. Nägerl: STED nanoscopy of actin dynamics in synapses deep inside living brain slices, Biophys. J. 101(5), 1277–1284 (2011)

    CAS  Google Scholar 

  211. A. Chazeau, A. Mehidi, D. Nair, J.J. Gautier, C. Leduc, I. Chamma, F. Kage, A. Kechkar, O. Thoumine, K. Rottner, D. Choquet, A. Gautreau, J.-B. Sibarita, G. Giannone: Nanoscale segregation of actin nucleation and elongation factors determines dendritic spine protrusion, EMBO Journal 33(23), 2745–2764 (2014)

    CAS  Google Scholar 

  212. K. Takasaki, B.L. Sabatini: Super-resolution 2-photon microscopy reveals that the morphology of each dendritic spine correlates with diffusive but not synaptic properties, Front. Neuroanat. 8, 29 (2014)

    Google Scholar 

  213. J. Tønnesen, G. Katona, B. Rózsa, U.V. Nägerl: Spine neck plasticity regulates compartmentalization of synapses, Nat. Neurosci. 17(5), 678–685 (2014)

    Google Scholar 

  214. S. Berning, K.I. Willig, H. Steffens, P. Dibaj, S.W. Hell: Nanoscopy in a living mouse brain, Science 335(6068), 551 (2012)

    CAS  Google Scholar 

  215. J.-M. Masch, H. Steffens, J. Fischer, J. Engelhardt, J. Hubrich, J. Keller-Findeisen, E. D’Este, N.T. Urban, S.G.N. Grant, S.J. Sahl, D. Kamin, S.W. Hell: Robust nanoscopy of a synaptic protein in living mice by organic-fluorophore labeling, Proc. Natl. Acad. Sci. USA 115(34), E8047–E8056 (2018)

    CAS  Google Scholar 

  216. S. Schnorrenberg, T. Grotjohann, G. Vorbrüggen, A. Herzig, S.W. Hell, S. Jakobs: In vivo super-resolution RESOLFT microscopy of Drosophila melanogaster, eLife 5, e15567 (2016)

    Google Scholar 

  217. W.C. Duim, Y. Jiang, K. Shen, J. Frydman, W.E. Moerner: Super-resolution fluorescence of huntingtin reveals growth of globular species into short fibers and coexistence of distinct aggregates, ACS Chem. Biol. 9(12), 2767–2778 (2014)

    CAS  Google Scholar 

  218. D. Pinotsi, A.K. Buell, C. Galvagnion, C.M. Dobson, G.S. Kaminski Schierle, C.F. Kaminski: Direct observation of heterogeneous amyloid fibril growth kinetics via two-color super-resolution microscopy, Nano Lett. 14(1), 339–345 (2014)

    CAS  Google Scholar 

  219. G.S. Kaminski Schierle, S. van de Linde, M. Erdelyi, E.K. Esbjörner, T. Klein, E. Rees, C.W. Bertoncini, C.M. Dobson, M. Sauer, C.F. Kaminski: In situ measurements of the formation and morphology of intracellular \(\beta\)-amyloid fibrils by super-resolution fluorescence imaging, J. Am. Chem. Soc. 133(33), 12902–12905 (2011)

    CAS  Google Scholar 

  220. S.J. Sahl, L.E. Weiss, W.C. Duim, J. Frydman, W.E. Moerner: Cellular inclusion bodies of mutant huntingtin exon 1 obscure small fibrillar aggregate species, Sci. Rep. 2, 895 (2012)

    Google Scholar 

  221. M.J. Roberti, J. Fölling, M.S. Celej, M. Bossi, T.M. Jovin, E.A. Jares-Erijman: Imaging nanometer-sized \(\alpha\)-synuclein aggregates by superresolution fluorescence localization microscopy, Biophys. J. 102(7), 1598–1607 (2012)

    CAS  Google Scholar 

  222. E.M. Sontag, L.A. Joachimiak, Z. Tan, A. Tomlinson, D.E. Housman, C.G. Glabe, S.G. Potkin, J. Frydman, L.M. Thompson: Exogenous delivery of chaperonin subunit fragment ApiCCT1 modulates mutant huntingtin cellular phenotypes, Proc. Natl. Acad. Sci. USA 110(8), 3077–3082 (2013)

    CAS  Google Scholar 

  223. S.J. Sahl, L. Lau, W.I.M. Vonk, L.E. Weiss, J. Frydman, W.E. Moerner: Delayed emergence of subdiffraction-sized mutant huntingtin fibrils following inclusion body formation, Q. Rev. Biophys. 49, e2 (2016)

    Google Scholar 

  224. L. Li, H. Liu, P. Dong, D. Li, W.R. Legant, J.B. Grimm, L.D. Lavis, E. Betzig, R. Tjian, Z. Liu: Real-time imaging of Huntingtin aggregates diverting target search and gene transcription, eLife 5, e17056 (2016)

    Google Scholar 

  225. B.R. Patton, D. Burke, D. Owald, T.J. Gould, J. Bewersdorf, M.J. Booth: Three-dimensional STED microscopy of aberrating tissue using dual adaptive optics, Opt. Express 24(8), 8862–8876 (2016)

    Google Scholar 

  226. J. Antonello, E.B. Kromann, D. Burke, J. Bewersdorf, M.J. Booth: Coma aberrations in combined two- and three-dimensional STED nanoscopy, Opt. Lett. 41(15), 3631–3634 (2016)

    Google Scholar 

  227. D. Burke, B. Patton, F. Huang, J. Bewersdorf, M.J. Booth: Adaptive optics correction of specimen-induced aberrations in single-molecule switching microscopy, Optica 2(2), 177–185 (2015)

    CAS  Google Scholar 

  228. K.I. Willig, H. Steffens, C. Gregor, A. Herholt, M.J. Rossner, S.W. Hell: Nanoscopy of filamentous actin in cortical dendrites of a living mouse, Biophys. J. 106(1), L01–L3 (2014)

    CAS  Google Scholar 

  229. M. Ratz, I. Testa, S.W. Hell, S. Jakobs: CRISPR/Cas9-mediated endogenous protein tagging for RESOLFT super-resolution microscopy of living human cells, Sci. Rep. 5, 9592 (2015)

    CAS  Google Scholar 

  230. F. Bottanelli, E.B. Kromann, E.S. Allgeyer, R.S. Erdmann, S. Wood Baguley, G. Sirinakis, A. Schepartz, D. Baddeley, D.K. Toomre, J.E. Rothman, J. Bewersdorf: Two-colour live-cell nanoscale imaging of intracellular targets, Nat. Commun. 7, 10778 (2016)

    CAS  Google Scholar 

  231. G.C.H. Mo, B. Ross, F. Hertel, P. Manna, X. Yang, E. Greenwald, C. Booth, A.M. Plummer, B. Tenner, Z. Chen, Y. Wang, E.J. Kennedy, P.A. Cole, K.G. Fleming, A. Palmer, R. Jimenez, J. Xiao, P. Dedecker, J. Zhang: Genetically encoded biosensors for visualizing live-cell biochemical activity at super-resolution, Nat. Methods 14(4), 427–434 (2017)

    CAS  Google Scholar 

  232. I. Testa, N.T. Urban, S. Jakobs, C. Eggeling, K.I. Willig, S.W. Hell: Nanoscopy of living brain slices with low light levels, Neuron 75(6), 992–1000 (2012)

    CAS  Google Scholar 

  233. F. Göttfert, T. Pleiner, J. Heine, V. Westphal, D. Görlich, S.J. Sahl, S.W. Hell: Strong signal increase in STED fluorescence microscopy by imaging regions of subdiffraction extent, Proc. Natl. Acad. Sci. USA 114(9), 2125–2130 (2017)

    Google Scholar 

  234. J.G. Danzl, S.C. Sidenstein, C. Gregor, N.T. Urban, P. Ilgen, S. Jakobs, S.W. Hell: Coordinate-targeted fluorescence nanoscopy with multiple off states, Nat. Photonics 10(2), 122–128 (2016)

    CAS  Google Scholar 

  235. J. Heine, M. Reuss, B. Harke, E. D’Este, S.J. Sahl, S.W. Hell: Adaptive-illumination STED nanoscopy, Proc. Natl. Acad. Sci. USA 114(37), 9797–9802 (2017)

    CAS  Google Scholar 

  236. B. Roubinet, M.L. Bossi, P. Alt, M. Leutenegger, H. Shojaei, S. Schnorrenberg, S. Nizamov, M. Irie, V.N. Belov, S.W. Hell: Carboxylated photoswitchable diarylethenes for biolabeling and super-resolution RESOLFT microscopy, Angew. Chem. Int. Ed. 55(49), 15429–15433 (2016)

    CAS  Google Scholar 

  237. H. Ta, J. Keller, M. Haltmeier, S.K. Saka, J. Schmied, F. Opazo, P. Tinnefeld, A. Munk, S.W. Hell: Mapping molecules in scanning far-field fluorescence nanoscopy, Nat. Commun. 6, 7977 (2015)

    CAS  Google Scholar 

  238. S.W. Hell: Nanoscopy with focused light (Nobel Lecture), Angew. Chem. Int. Ed. 54(28), 8054–8066 (2015)

    CAS  Google Scholar 

  239. F. Balzarotti, Y. Eilers, K.C. Gwosch, A.H. Gynnå, V. Westphal, F.D. Stefani, J. Elf, S.W. Hell: Nanometer resolution imaging and tracking of fluorescent molecules with minimal photon fluxes, Science 355, 606–612 (2017)

    CAS  Google Scholar 

  240. Y. Eilers, H. Ta, K.C. Gwosch, F. Balzarotti, S.W. Hell: MINFLUX monitors rapid molecular jumps with superior spatiotemporal resolution, Proc. Natl. Acad. Sci. USA 115(24), 6117–6122 (2018)

    CAS  Google Scholar 

Download references

Acknowledgements

The authors thank all members of the Department of NanoBiophotonics, Max Planck Institute for Biophysical Chemistry, over the years for their contributions to this work and for valuable discussions. Parts of the chapter draw on previous texts from [22.106, 22.163]and the Nobel Lecture delivered by S.W.H. in Stockholm on December 8, 2014. A first version of this chapter, on which parts of the present chapter are based, was published in 2005 and reprinted in 2007.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steffen J. Sahl .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sahl, S.J., Schönle, A., Hell, S.W. (2019). Fluorescence Microscopy with Nanometer Resolution. In: Hawkes, P.W., Spence, J.C.H. (eds) Springer Handbook of Microscopy. Springer Handbooks. Springer, Cham. https://doi.org/10.1007/978-3-030-00069-1_22

Download citation

Publish with us

Policies and ethics