Skip to main content

Fluorescence Microscopy

  • Chapter
  • First Online:
Springer Handbook of Microscopy

Abstract

In this two-part chapter, the background to confocal microscopy and two-photon fluorescence microscopy is first presented, with a detailed description of the optical setup. This is followed by a critical account of the many super-resolution techniques: coordinated stochastic fluorescence microscopy (photoactivation localization microscopy ( ), stochastic optical reconstruction microscopy ( ), point accumulation for imaging in nanoscale topography ( ), coordinate targeted fluorescence microscopy (STED, reversible saturable optical fluorescence transition ( )), structured illumination microscopy, expansion microscopy ( ), and liquid tunable microscopy ( ).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 279.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 359.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • W. Denk, J.H. Strickler, W.W. Webb: Two-photon laser scanning fluorescence microscopy, Science 248, 73–76 (1990)

    CAS  Google Scholar 

  • E. Pennisi: Biochemistry: Photons add up to better microscopy, Science 275, 480–481 (1997)

    CAS  Google Scholar 

  • A. Esposito, F. Federici, C. Usai, F. Cannone, G. Chirico, M. Collini, A. Diaspro: Notes on theory and experimental conditions behind two-photon excitation microscopy, Microsc. Res. Tech. 63, 12–17 (2004)

    CAS  Google Scholar 

  • A. Diaspro: New world microscopy, IEEE Eng. Med. Biol. Mag. 15(1), 29–100 (1996)

    Google Scholar 

  • A.J. Koster, J. Klumperman: Electron microscopy in cell biology: integrating structure and function, Nat. Rev. Mol. Cell. Biol. 4(9, Suppl.), SS6–SS9 (2003)

    Google Scholar 

  • U. Dürig, D.W. Pohl: Near-field optical-scanning microscopy, J. Appl. Phys. 59(10), 3318–3327 (1986)

    Google Scholar 

  • G. Binnig, C.F. Quate, C. Gerber: Atomic force microscope, Phys. Rev. Lett. 56(9), 930–933 (1986)

    CAS  Google Scholar 

  • E. Ruska, M. Knoll: Die magnetische Sammelspule fuer schnelle Elektronenstrahlen, Z. Tech. Phys. 12(488), 389–400 (1931)

    Google Scholar 

  • J.B. Pawley (Ed.): Handbook of Biological Confocal Microscopy (Plenum, New York 1995)

    Google Scholar 

  • A. Periasamy (Ed.): Methods in Cellular Imaging (Oxford Univ. Press, New York 2001)

    Google Scholar 

  • A. Diaspro (Ed.): Confocal and Two-Photon Microscopy: Foundations, Applications, and Advances (Wiley, New York 2002)

    Google Scholar 

  • D.J. Arndt-Jovin, R.M. Nicoud, J. Kaufmann, T.M. Jovin: Fluorescence digital-imaging microscopy in cell biology, Science 230, 1333–1335 (1985)

    Google Scholar 

  • F. Beltrame, B. Bianco, G. Castellaro, A. Diaspro: Fluorescence, absorption, phase-contrast, holographic and acoustical cytometries of living cells. In: Interactions Between Electromagnetic Fields and Cells, NATO ASI, Vol. 97, ed. by A. Chiabrera, H.P. Schwan (Plenum, New York 1985) pp. 483–498

    Google Scholar 

  • X.F. Wang, B. Herman: Fluorescence Imaging Spectroscopy and Microscopy (Wiley, New York 1996)

    Google Scholar 

  • B. Herman, H.J. Tanke: Fluorescence Microscopy (Springer, New York 1998)

    Google Scholar 

  • J.K. Jaiswal, E.R. Goldman, H. Mattoussi, S.M. Simon: Use of quantum dots for live cell imaging, Nat. Methods 1(1), 73–78 (2004)

    Google Scholar 

  • G.H. Patterson, J.A. Lippincott-Schwarz: Photoactivatable GFP for selective photolabeling of proteins and cells, Science 297, 1873 (2002)

    CAS  Google Scholar 

  • J. Wiedenmann, S. Ivanchenko, F. Oswald, F. Schmitt, C. Rocker, A. Salih, K.-D. Spindler, G.U. Nienhaus: EosFP, a fluorescent marker protein with UV-inducible green-to-red fluorescence conversion, Proc. Natl. Acad. Sci. U.S.A. 101(45), 15905–15910 (2004)

    CAS  Google Scholar 

  • A. Egner, V. Andresen, S.W. Hell: Comparison of the axial resolution of practical Nipkow-disk confocal fluorescence microscopy with that of multifocal multiphoton microscopy: Theory and experiment, J. Microsc. 206(1), 24–32 (2002)

    CAS  Google Scholar 

  • H. Gugel, J. Bewersdorf, S. Jakobs, J. Engelhardt, R. Storz, S.W. Hell: Cooperative 4Pi excitation and detection yields sevenfold sharper optical sections in live-cell microscopy, Biophys. J. 87(6), 4146–4152 (2004)

    CAS  Google Scholar 

  • S.W. Hell: Toward fluorescence nanoscopy, Nat. Biotechnol. 21, 1347–1355 (2003)

    CAS  Google Scholar 

  • P.I. Bastiaens, S.W. Hell: Recent advances in light microscopy, J. Struct. Biol. 147, 1–89 (2004)

    Google Scholar 

  • G. McConnell, E. Riis: Two-photon laser scanning fluorescence microscopy using photonic crystal fiber, J. Biomed. Opt. 9(5), 922–927 (2004)

    CAS  Google Scholar 

  • J.C. Jung, A.D. Mehta, E. Aksay, R. Stepnoski, M.J. Schnitzer: In vivo mammalian brain imaging using one- and two-photon fluorescence microendoscopy, J. Neurophysiol. 92(5), 3121–3133 (2004)

    Google Scholar 

  • C. Kappel, A. Selle, T. Fricke-Begemann, M.A. Bader, G. Marowsky: Giant enhancement of two-photon fluorescence induced by resonant double grating waveguide structures, Appl. Phys. B Lasers Opt. 79(5), 531–534 (2004)

    CAS  Google Scholar 

  • S. Basu, P.J. Campagnola: Properties of crosslinked protein matrices for tissue engineering applications synthesized by multiphoton excitation, J. Biomed. Mat. Res. Part A 71(A2), 359–368 (2004)

    Google Scholar 

  • D.K. Bird, K.W. Eliceiri, C.H. Fan, J.G. White: Simultaneous two-photon spectral and lifetime fluorescence microscopy, Appl. Opt. 43(27), 5173–5182 (2004)

    Google Scholar 

  • B.A. Nemet, V. Nikolenko, R. Yuste: Second harmonic imaging of membrane potential of neurons with retinal, J. Biomed. Opt. 9(5), 873–881 (2004)

    Google Scholar 

  • A. Periasamy, A. Diaspro: Multiphoton microscopy, J. Biomed. Opt. 8(3), 327–328 (2003)

    Google Scholar 

  • M. Weinstein, K.R. Castleman: Reconstructing 3-D specimens from 2-D section images, Proc. SPIE 26, 131–138 (1971)

    Google Scholar 

  • D.A. Agard, Y. Hiraoka, P.J. Shaw, J.W. Sedat: Fluorescence microscopy in three dimensions, Methods Cell. Biol. 30, 353–378 (1989)

    CAS  Google Scholar 

  • B. Bianco, A. Diaspro: Analysis of the three dimensional cell imaging obtained with optical microscopy techniques based on defocusing, Cell Biophys. 15(3), 189–200 (1989)

    CAS  Google Scholar 

  • A. Diaspro, M. Sartore, C. Nicolini: Three-dimensional representation of biostructures imaged with an optical microscope: I. Digital optical sectioning, Image Vis. Comp. 8, 130–141 (1990)

    Google Scholar 

  • G.J. Brakenhoff, P. Blom, P. Barends: Confocal scanning light microscopy with high aperture immersion lenses, J. Microsc. 117, 219–232 (1979)

    Google Scholar 

  • C.J.R. Sheppard, T. Wilson: Image formation in confocal scanning microscopes, Optik 55, 331–342 (1980)

    Google Scholar 

  • T. Wilson, C.J.R. Sheppard: Theory and Practice of Scanning Optical Microscopy (Academic Press, London 1984)

    Google Scholar 

  • K. Carlsson, P.E. Danielsson, R. Lenz, A. Liljeborg, L. Majlof, N. Aslund: Three-dimensional microscopy using a confocal laser scanning microscope, Opt. Lett. 10, 53–55 (1985)

    CAS  Google Scholar 

  • D.M. Shotton (Ed.): Electronic Light Microscopy: Techniques in Modern Biomedical Microscopy, Vol. 1 (Wiley, New York 1993)

    Google Scholar 

  • P.C. Cheng (Ed.): Computer Assisted Multidimensional Microscopies (Springer, New York 1994)

    Google Scholar 

  • B.R. Masters: Selected Papers on Confocal Microscopy, SPIE Milestone Series (SPIE, Bellingham 1996)

    Google Scholar 

  • C.J.R. Sheppard, D.M. Shotton: Confocal Laser Scanning Microscopy (BIOS, Oxford 1997)

    Google Scholar 

  • A. Diaspro: Two-photon microscopy, Microsc. Res. Tech. 47, 163–212 (1999)

    CAS  Google Scholar 

  • A. Diaspro: Two-photon excitation microscopy, IEEE Eng. Med. Biol. Mag. 18(5), 16–99 (1999)

    CAS  Google Scholar 

  • A. Diaspro: Two-photon excitation of fluorescence in three-dimensional microscopy, Eur. J. Histochem. 43, 169–178 (1999)

    CAS  Google Scholar 

  • K. König: Multiphoton microscopy in life sciences, J. Microsc. 200, 83–104 (2000)

    Google Scholar 

  • E. Gratton, N.P. Barry, S. Beretta, A. Celli: Multiphoton fluorescence microscopy, Methods 25, 103–110 (2001)

    CAS  Google Scholar 

  • J.G. White, W.B. Amos, M. Fordham: An evaluation of confocal versus conventional imaging of biological structures by fluorescence light microscopy, J. Cell Biol. 105, 41–48 (1987)

    CAS  Google Scholar 

  • R.H. Webb: Confocal optical microscopy, Rep. Prog. Phys. 59, 427–471 (1996)

    Google Scholar 

  • B. Amos: Lessons from the history of light microscopy, Nat. Cell Biol. 2, E151–E152 (2000)

    CAS  Google Scholar 

  • S.W. Hell, K. Bahlmann, M. Schrader, A. Soini, H. Malak, I. Gryczynski, J.R. Lakowicz: Three-photon excitation in fluorescence microscopy, J. Biomed. Opt. 1, 71–74 (1996)

    CAS  Google Scholar 

  • S. Maiti, J.B. Shear, R.M. Williams, W.R. Zipfel, W.W. Webb: Measuring serotonin distribution in live cells with three-photon excitation, Science 275, 530–532 (1997)

    CAS  Google Scholar 

  • J.N. Gannaway, C.J.R. Sheppard: Second harmonic imaging in the scanning optical microscope, Opt. Quantum Electron. 10, 435–439 (1978)

    CAS  Google Scholar 

  • R. Gauderon, R.B. Lukins, C.J.R. Sheppard: Effects of a confocal pinhole in two-photon microscopy, Microsc. Res. Tech. 47, 210–214 (1999)

    CAS  Google Scholar 

  • P. Campagnola, M. Wei, A. Lewis, L. Loew: High-resolution nonlinear optical imaging of live cells by second harmonic generation, Biophys. J. 77, 3341–3351 (1999)

    CAS  Google Scholar 

  • A. Zoumi, A. Yeh, B.J. Tromberg: Imaging cells and extracellular matrix in vivo by using second-harmonic generation and two-photon excited fluorescence, Proc. Natl. Acad. Sci. U.S.A. 99(17), 11014–11019 (2002)

    CAS  Google Scholar 

  • M. Mueller, J. Squier, K.R. Wilson, G.J. Brakenhoff: 3-D microscopy of transparent objects using third-harmonic generation, J. Microsc. 191, 266–274 (1998)

    Google Scholar 

  • J.A. Squier, M. Muller, G.J. Brakenhoff, K.R. Wilson: Third harmonic generation microscopy, Opt. Express 3, 315–324 (1998)

    CAS  Google Scholar 

  • K.M. Berland, P.T.C. So, E. Gratton: Two-photon fluorescence correlation spectroscopy: method and application to the intracellular environment, Biophys. J. 68, 694–701 (1995)

    CAS  Google Scholar 

  • P. Schwille: Fluorescence correlation spectroscopy and its potential for intracellular applications, Cell Biochem. Biophys. 34, 383–405 (2001)

    CAS  Google Scholar 

  • P. Schwille, U. Haupts, S. Maiti, W.W. Webb: Molecular dynamics in living cells observed by fluorescence correlation spectroscopy with one-and two-photon excitation, Biophys. J. 77, 2251–2265 (1999)

    CAS  Google Scholar 

  • P. Schwille, S. Kummer, A.A. Heikal, W.E. Moerner, W.W. Webb: Fluorescence correlation spectroscopy reveals fast optical excitation-driven intramolecular dynamics of yellow fluorescent proteins, Proc. Natl. Acad. Sci. U.S.A. 97, 151–156 (2000)

    CAS  Google Scholar 

  • K.G. Heinze, M. Jahnz, P. Schwille: Triple-color coincidence analysis: one step further in following higher order molecular complex formation, Biophys. J. 86(1), 506–516 (2004)

    CAS  Google Scholar 

  • Q. Ruan, M.A. Cheng, M. Levi, E. Gratton, W.W. Mantulin: Spatial-temporal studies of membrane dynamics: Scanning fluorescence correlation spectroscopy (SFCS), Biophys. J. 87(2), 1260–1267 (2004)

    CAS  Google Scholar 

  • P.W. Wiseman, J.A. Squier, M.H. Ellisman, K.R. Wilson: Two-photon image correlation spectroscopy and image cross-correlation spectroscopy, J. Microsc. 200, 14–25 (2000)

    CAS  Google Scholar 

  • P.W. Wiseman, F. Capani, J.A. Squier, M.E. Martone: Counting dendritic spines in brain tissue slices by image correlation spectroscopy analysis, J. Microsc. 205, 177–186 (2002)

    CAS  Google Scholar 

  • K. König, T. Krasieva, E. Bauer, U. Fiedler, M.W. Berns, B.J. Tromberg, K.O. Greulich: Cell damage by UVA radiation of a mercury microscopy lamp probed by autofluorescence modifications, cloning assay and comet assay, J. Biomed. Opt. 1, 217–222 (1996)

    Google Scholar 

  • K. König, P.T.C. So, W.W. Mantulin, B.J. Tromberg, E. Gratton: Two-photon excited lifetime imaging of autofluorescence in cells during UVA and NIR photostress, J. Microsc. 183, 197–204 (1996)

    Google Scholar 

  • T. French, P.T.C. So, D.J. Weaver, T. Coelho-Sampaio, E. Gratton: Two-photon fluorescence lifetime imaging microscopy of macrophage-mediated antigen processing, J. Microsc. 185, 339–353 (1997)

    CAS  Google Scholar 

  • J. Sytsma, J.M. Vroom, C.J. De Grauw, H.C. Gerritsen: Time-gated fluorescence lifetime imaging and microvolume spectroscopy using two-photon excitation, J. Microsc. 191, 39–51 (1998)

    CAS  Google Scholar 

  • M. Straub, S.W. Hell: Fluorescence lifetime three-dimensional microscopy with picosecond precision using a multifocal multiphoton microscope, App. Phys. Lett. 73, 1769–1771 (1998)

    CAS  Google Scholar 

  • J. Mertz, C. Xu, W.W. Webb: Single molecule detection by two-photon excited fluorescence, Opt. Lett. 20, 2532–2534 (1995)

    CAS  Google Scholar 

  • X.S. Xie, H.P. Lu: Single molecule enzymology, J. Biol. Chem. 274, 15967–15970 (1999)

    CAS  Google Scholar 

  • M. Sonnleitner, G.J. Schutz, T. Schmidt: Imaging individual molecules by two-photon excitation, Chem. Phys. Lett. 300, 221–226 (1999)

    CAS  Google Scholar 

  • M. Sonnleitner, G. Schutz, G. Kada, H. Schindler: Imaging single lipid molecules in living cells using two-photon excitation, Single Mol. 1, 182–183 (2000)

    CAS  Google Scholar 

  • F. Cannone, G. Chirico, A. Diaspro: Two-photon interactions at single fluorescent molecule level, J. Biomed. Opt. 8(3), 391–395 (2003)

    CAS  Google Scholar 

  • G. Chirico, F. Cannone, S. Beretta, G. Baldini, A. Diaspro: Single molecule studies by means of the two-photon fluorescence distribution, Microsc. Res. Tech. 55, 359–364 (2001)

    CAS  Google Scholar 

  • G. Chirico, F. Cannone, A. Diaspro: Single molecule photodynamics by means of one- and two-photon approach, J. Phys. D: Appl. Phys. 36, 1–7 (2003)

    Google Scholar 

  • J.D. Bhawalkar, N.D. Kumar, C.F. Zhao, P.N. Prasad: Two-photon photodynamic therapy, J. Clin. Laser Med. Surg. 15, 201–204 (1997)

    CAS  Google Scholar 

  • G. Chirico, F. Cannone, A. Diaspro, S. Bologna, V. Pellegrini, R. Nifosì, F. Beltram: Multiphoton switching dynamics of single green fluorescent proteins, Phys. Rev. E 70, 030901 (2004)

    CAS  Google Scholar 

  • G. Chirico, A. Diaspro, F. Cannone, M. Collini, S. Bologna, V. Pellegrini, F. Beltram: Selective fluorescence recovery after bleaching of single E2gfp proteins induced by two-photon excitation, Chem. Phys. Chem. 6(2), 328–335 (2005)

    CAS  Google Scholar 

  • J.N. Post, K.A. Lidke, B. Rieger, D.J. Arndt-Jovin: One- and two-photon photoactivation of a paGFP-fusion protein in live Drosophila embryos, FEBS Letters 579(2), 325–330 (2005)

    CAS  Google Scholar 

  • M. Schneider, S. Barozzi, I. Testa, M. Faretta, A. Diaspro: Two-photon activation and excitation properties of Pa-Gfp in the 720–920 nm region, Biophys. J. 89(2), 1346–1352 (2005)

    CAS  Google Scholar 

  • N.S. White, R.J. Errington: Improved laser scanning fluorescence microscopy by multiphoton excitation, Adv. Imaging Elect. Phys. 113, 249–277 (2000)

    CAS  Google Scholar 

  • B.R. Masters: Selected Papers on Multi-Photon Excitation Microscopy, SPIE Milestone Series (SPIE, Bellingham 2002)

    Google Scholar 

  • M.D. Cahalan, I. Parker, S.H. Wei, M.J. Miller: Two-photon tissue imaging: Seeing the immune system in a fresh light, Nat. Rev. Immunol. 2(11), 872–880 (2002)

    CAS  Google Scholar 

  • M.J. Miller, S.H. Wei, M.D. Cahalan, I. Parker: Autonomous T cell trafficking examined in vivo with intravital two-photon microscopy, Proc. Natl. Acad. Sci. U.S.A. 100(5), 2604–2609 (2003)

    CAS  Google Scholar 

  • A. Diaspro: Two-photon fluorescence excitation. A new potential perspective in flow cytometry, Minerva Biotechnol. 11(2), 87–92 (1998)

    Google Scholar 

  • A. Diaspro: Rapid dissemination of two-photon excitation microscopy prompts new applications, Microsc. Res. Tech. 63(1), 1–2 (2004)

    Google Scholar 

  • D.W. Piston: When two is better than one: elements of intravital microscopy, PLoS Biol. 3(6), e207 (2005)

    Google Scholar 

  • H.G. Cruz, C. Luscher: Applications of two-photon microscopy in the neurosciences, Front. Biosci. 10, 2263–2278 (2005)

    CAS  Google Scholar 

  • P.D. Davidovits, M.D. Egger: Scanning laser microscope, Nature 223, 831 (1969)

    CAS  Google Scholar 

  • P.D. Davidovits, M.D. Egger: Scanning laser microscope for biological investigations, Appl. Opt. 10, 1615–1619 (1971)

    CAS  Google Scholar 

  • C.J.R. Sheppard, A. Choudhury: Image formation in the scanning microscope, Opt. Acta 24, 1051–1073 (1977)

    Google Scholar 

  • G.J. Brakenhoff, E.A. van Spronsen, H.T. van der Voort, N. Nanninga: Three-dimensional confocal fluorescence microscopy, Method Cell Biol. 30, 379–398 (1989)

    CAS  Google Scholar 

  • M. Minsky: Memoir of inventing the confocal scanning microscope, Scanning 10, 128–138 (1988)

    Google Scholar 

  • C.J.R. Sheppard, R. Kompfner: Resonant scanning optical microscope, Appl. Opt. 17, 2879–2882 (1978)

    CAS  Google Scholar 

  • M. Göppert-Mayer: Über Elementarakte mit zwei Quantensprüngen, Ann. Phys. 9, 273–295 (1931)

    Google Scholar 

  • M. Minsky: Microscopy apparatus, U.S. Patent (Application) 3013467 (1957), filed 7 November

    Google Scholar 

  • W. Denk, K. Svoboda: Photon upmanship: Why multiphoton imaging is more than a gimmick, Neuron 18, 351–357 (1997)

    CAS  Google Scholar 

  • O. Svelto: Principles of Lasers, 4th edn. (Plenum, New York 1998)

    Google Scholar 

  • F. Wise: Lasers for two-photon microscopy. In: Imaging: A Laboratory Manual, ed. by R. Yuste, F. Lanni, A. Konnerth (Cold Spring Harbor, Cold Spring Harbor 1999) pp. 18.1–18.9

    Google Scholar 

  • W. Kaiser, C.G.B. Garrett: Two-photon excitation in CaF2:Eu2+, Phys. Rev. Lett. 7, 229–231 (1961)

    CAS  Google Scholar 

  • S. Singh, L.T. Bradley: Three-photon absorption in naphthalene crystals by laser excitation, Phys. Rev. Lett. 12, 162–164 (1964)

    Google Scholar 

  • P.A. Franken, A.E. Hill, C.W. Peters, G. Weinreich: Generation of optical harmonics, Phys. Rev. Lett. 7, 118–119 (1961)

    Google Scholar 

  • P.M. Rentzepis, C.J. Mitschele, A.C. Saxman: Measurement of ultrashort laser pulses by three-photon fluorescence, Appl. Phys. Lett. 17, 122–124 (1970)

    CAS  Google Scholar 

  • R. Hellwarth, P. Chistensen: Nonlinear optical microscopic examination of structures in polycrystalline ZnSe, Opt. Commun. 12, 318–322 (1974)

    CAS  Google Scholar 

  • K. König, I. Riemann, P. Fischer, K.J. Halbhuber: Intracellular nanosurgery with near infrared femtosecond laser pulses, Cell. Mol. Biol. 45, 195–201 (1999)

    Google Scholar 

  • D.M. Friedrich, W.M. McClain: Two-photon molecular electronic spectroscopy, Annu. Rev. Phys. Chem. 31, 559–577 (1980)

    CAS  Google Scholar 

  • D.M. Friedrich: Two-photon molecular spectroscopy, J. Chem. Educ. 59, 472–483 (1982)

    CAS  Google Scholar 

  • R.R. Birge: Two-photon spectroscopy of protein-bound fluorophores, Acc. Chem. Res. 19, 138–146 (1986)

    CAS  Google Scholar 

  • P.R. Callis: Two-photon-induced fluorescence, Annu. Rev. Phys. Chem. 48, 271–297 (1997)

    CAS  Google Scholar 

  • D.J. Arndt-Jovin, M. Robert-Nicoud, S.J. Kaufman, T.M. Jovin: Fluorescence digital imaging microscopy in cell biology, Science 230(4723), 247–256 (1985)

    CAS  Google Scholar 

  • B. Chance: Cell Structure and Function by Microspectrofluorometry (Academic, New York 1989)

    Google Scholar 

  • R.Y. Tsien: The green fluorescent protein, Annu. Rev. Biochem. 67, 509–544 (1998)

    CAS  Google Scholar 

  • J.P. Robinson: Current Protocols in Cytometry (Wiley, New York 2001)

    Google Scholar 

  • J.B. Birks: Photophysics of Aromatic Molecules (Wiley, London 1970)

    Google Scholar 

  • W. Denk, D. Piston, W.W. Webb: Two-photon molecular excitation in laser scanning microscopy. In: Handbook of Confocal Microscopy, ed. by J.B. Pawley (Plenum, New York 1995) pp. 445–457

    Google Scholar 

  • C.R. Cantor, P.R. Schimmel: Biophysical Chemistry. Part II: Techniques for the Study of Biological Structure and Function (Freeman, New York 1980)

    Google Scholar 

  • A. Kriete (Ed.): Visualization in Biomedical Microscopies (VCH, Weinheim 1992)

    Google Scholar 

  • D.A. Agard: Optical sectioning microscopy: Cellular architecture in three dimensions, Annu. Rev. Biophys. 13, 191–219 (1984)

    CAS  Google Scholar 

  • M. Minsky: Microscopy apparatus, U.S. Patent, 3013467 (1961)

    Google Scholar 

  • M. Petran, M. Hadravsky, M.D. Egger, R. Galambos: Tandem-scanning reflected-light microscope, J. Opt. Soc. Am. 58, 661–664 (1968)

    Google Scholar 

  • G.S. Kino, T.R. Corle: Confocal scanning optical microscopy, Phys. Today 42, 55–62 (1989)

    CAS  Google Scholar 

  • A. Diaspro, S. Annunziata, M. Raimondo, M. Robello: Three-nation dimensional optical behaviour of a confocal microscope with single illumi-and detection pinhole through imaging of subresolution beads, Microsc. Res. Tech. 45(2), 130–131 (1999)

    CAS  Google Scholar 

  • J. Jonkman, E. Stelzer: Resolution and contrast in confocal and two-photon microscopy. In: Confocal and Two-Photon Microscopy: Foundations, Applications and Advances, ed. by A. Diaspro (Wiley, New York 2002) pp. 101–126

    Google Scholar 

  • P. Torok, C.J.R. Sheppard: The role of pinhole size in high aperture two and three-photon microscopy. In: Confocal and Two-Photon Microscopy: Foundations, Applications and Advances, ed. by A. Diaspro (Wiley, New York 2002) pp. 127–152

    Google Scholar 

  • A. Diaspro, F. Federici, M. Robello: Influence of refractive-index mismatch in high-resolution three-dimensional confocal microscopy, Appl. Opt. 41(4), 685–690 (2002)

    Google Scholar 

  • A. Diaspro, P. Scelza, C. Nicolini: MUCIDS: An operative C environment for acquisition and processing of polarized-light scattered from biological specimens, Comput. Appl. Biosci. 6(3), 229–236 (1990)

    CAS  Google Scholar 

  • M. Bertero, P. Boccacci: Introduction to Inverse Problems in Imaging (IOP, Bristol 1998)

    Google Scholar 

  • P. Boccacci, M. Bertero: Image restoration methods: Basics and algorithms. In: Confocal and Two-Photon Microscopy: Foundations, Applications and Advances, ed. by A. Diaspro (Wiley, New York 2002) pp. 253–270

    Google Scholar 

  • P. Bonetto, P. Boccacci, M. Scarito, M. Davolio, M. Epifani, G. Vicidomini, C. Tacchetti, P. Ramoino, C. Usai, A. Diaspro: Three-dimensional microscopy migrates to the web with ‘‘powerup your microscope'', Microsc. Res. Tech. 64(2), 196–203 (2004)

    Google Scholar 

  • E.H.K. Stelzer, S. Hell, S. Lindek, R. Pick, C. Storz, R. Stricker, G. Ritter, N. Salmon: Non-linear absorption extends confocal fluorescence microscopy into the ultra-violet regime and confines the illumination volume, Opt. Commun. 104, 223–228 (1994)

    CAS  Google Scholar 

  • W. Denk: Two-photon excitation in functional biological imaging, J. Biomed. Opt. 1, 296–304 (1996)

    CAS  Google Scholar 

  • S.M. Potter: Vital imaging: two-photons are better than one, Curr. Biol. 6, 1596–1598 (1996)

    Google Scholar 

  • V.E. Centonze, J.G. White: Multiphoton excitation provides optical sections from deeper within scattering specimens than confocal imaging, Biophys. J. 75, 2015–2024 (1998)

    CAS  Google Scholar 

  • M. Gu, C.J.R. Sheppard: Comparison of three-dimensional imaging properties between two-photon and single-photon fluorescence microscopy, J. Microsc. 177, 128–137 (1995)

    Google Scholar 

  • D.W. Piston: Imaging living cells and tissues by two-photon excitation microscopy, Trends Cell Biol. 9, 66–69 (1999)

    CAS  Google Scholar 

  • J.M. Squirrel, D.L. Wokosin, J.G. White, B.D. Barister: Long-term two-photon fluorescence imaging of mammalian embryos without compromising variability, Nat. Biotechnol. 17, 763–767 (1999)

    Google Scholar 

  • A. Diaspro, M. Robello: Two-photon excitation of fluorescence for three-dimensional optical imaging of biological structures, J. Photochem. Photobiol. B 55, 1–8 (2000)

    CAS  Google Scholar 

  • P.T.C. So, C.Y. Dong, B.R. Masters, K.M. Berland: Two-photon excitation fluorescence microscopy, Annu. Rev. Biomed. Eng. 2, 399–429 (2000)

    CAS  Google Scholar 

  • T. Wilson: Confocal microscopy: Basic principles and architectures. In: Confocal and Two-Photon Microscopy: Foundations, Applications and Advances, ed. by A. Diaspro (Wiley, New York 2002) pp. 19–38

    Google Scholar 

  • G.J. Brakenhoff, M. Muller, R.I. Ghauharali: Analysis of efficiency of two-photon versus single-photon absorption for fluorescence generation in biological objects, J. Microsc. 183, 140–144 (1996)

    CAS  Google Scholar 

  • G.H. Patterson, D.W. Piston: Photobleaching in two-photon excitation microscopy, Biophys. J. 78, 2159–2162 (2000)

    CAS  Google Scholar 

  • A. Hopt, E. Neher: Highly nonlinear photodamage in two-photon fluorescence microscopy, Biophys. J. 80, 2029–2036 (2001)

    CAS  Google Scholar 

  • G. Chirico, F. Cannone, G. Baldini, A. Diaspro: Two-photon thermal bleaching of single fluorescent molecules, Biophys. J. 84, 588–598 (2003)

    CAS  Google Scholar 

  • W.H. Louisell: Quantum Statistical Properties of Radiation (Wiley, New York 1973)

    Google Scholar 

  • A. Diaspro: Building a two-photon microscope using a laser scanning confocal architecture. In: Methods in Cellular Imaging, ed. by A. Periasamy (Oxford Univ. Press, New York 2001) pp. 162–179

    Google Scholar 

  • J. Girkin, D. Wokosin: Practical multiphoton microscopy. In: Confocal and Two-Photon Microscopy: Foundations, Applications and Advances, ed. by A. Diaspro (Wiley, New York 2002) pp. 207–236

    Google Scholar 

  • O. Nakamura: Fundamentals of two-photon microscopy, Microsc. Res. Tech. 47, 165–171 (1999)

    CAS  Google Scholar 

  • A. Diaspro, C.J.R. Sheppard: Two-photon excitation microscopy: Basic principles and architectures. In: Confocal and Two-Photon Microscopy: Foundations, Applications, and Advances, ed. by A. Diaspro (Wiley, New York 2002) pp. 39–74

    Google Scholar 

  • M. Born, E. Wolf: Principles of Optics, 6th edn. (Cambridge Univ. Press, Cambridge 1980)

    Google Scholar 

  • G. Chirico, F. Cannone, S. Beretta, A. Diaspro, B. Campanini, S. Bettati, R. Ruotolo, A. Mozzarelli: Dynamics of green fluorescent protein mutant2 in solution, on spin-coated glasses, and encapsulated in wet silica gels, Protein Sci. 11(5), 1152–1161 (2002)

    CAS  Google Scholar 

  • C. Xu: Cross-sections of fluorescence molecules used in multiphoton microscopy. In: Confocal and Two-Photon Microscopy: Foundations, Applications and Advances, ed. by A. Diaspro (Wiley, New York 2002) pp. 75–100

    Google Scholar 

  • G.C. Cianci, J. Wu, K. Berland: Saturation modified point spread functions in two-photon microscopy, Microsc. Res. Tech. 64(2), 135–141 (2004)

    CAS  Google Scholar 

  • A. Diaspro, G. Chirico: Two-photon excitation microscopy, Adv. Imaging Elect. Phys. 126, 195–286 (2003)

    CAS  Google Scholar 

  • P.T.C. So, K.H. Kim, C. Buehler, B.R. Masters, L. Hsu, C.Y. Dong: Basic principles of multi-photon excitation microscopy. In: Methods in Cellular Imaging, ed. by A. Periasamy (Oxford Univ. Press, New York 2001) pp. 152–161

    Google Scholar 

  • C. Xu, J. Guild, W.W. Webb, W. Denk: Determination of absolute two-photon excitation cross sections by in situ second-order autocorrelation, Opt. Lett. 20, 2372–2374 (1995)

    CAS  Google Scholar 

  • M.A. Albota, C. Xu, W.W. Webb: Two-photon fluorescence excitation cross sections of biomolecular probes from 690 to 960 nm, Appl. Opt. 37, 7352–7356 (1998)

    CAS  Google Scholar 

  • M. Albota, D. Beljonne, J.L. Brédas, J.E. Ehrlich, J.Y. Fu, A.A. Heikal, S.E. Hess, T. Kogej, M.D. Levin, S.R. Marder, D. McCord-Maughon, J.W. Perry, H. Röckel, M. Rumi, G. Subramaniam, W.W. Webb, X.L. Wu, C. Xu: Design of organic molecules with large two-photon absorption cross sections, Science 281(5383), 1653–1656 (1998)

    CAS  Google Scholar 

  • A. Abbotto, G. Baldini, L. Beverina, G. Chirico, M. Collini, L. D'alfonso, A. Diaspro, R. Magrassi, L. Nardo, G.A. Pagani: Dimethyl-pepep: A DNA probe in two-photon excitation cellular imaging, Biophys. Chem. 114(1), 35–41 (2005)

    CAS  Google Scholar 

  • D.W. Piston, B.R. Masters, W.W. Webb: Three-dimensionally resolved NAD(P)H cellular metabolic redox imaging of the in situ cornea with two-photon excitation laser scanning microscopy, J. Microsc. 178, 20–27 (1995)

    CAS  Google Scholar 

  • J.R. Lakowicz, I. Gryczynski: Tryptophan fluorescence intensity and anisotropy decays of human serum albumin resulting from one-photon and two-photon excitation, Biophys. Chem. 45, 1–6 (1992)

    CAS  Google Scholar 

  • M. Chalfie, Y. Tu, G. Euskirchen, W.W. Ward, D.C. Prasher: Green fluorescent protein as a marker for gene expression, Science 263, 802–805 (1994)

    CAS  Google Scholar 

  • M. Chalfie, Y. Tu, G. Euskirchen, W.W. Ward, D.C. Prasher: Green fluorescent protein as a marker for gene expression, Science 263(5148), 802–805 (1994)

    CAS  Google Scholar 

  • M. Chalfie, S. Kain (Eds.): Green Fluorescent Protein. Properties, Applications and Protocols (Wiley, New York 1998)

    Google Scholar 

  • M. Zimmer: Green fluorescence protein (GFP): Applications, structure, and related photophysical behavior, Chem. Rev. 102(3), 759–781 (2002)

    CAS  Google Scholar 

  • G.A. Blab, P.H.M. Lommerse, L. Cognet, G.S. Harms, T. Schmidt: Two-photon excitation action cross-sections of the autofluorescent proteins, Chem. Phys. Lett. 350(1/2), 71–77 (2001)

    CAS  Google Scholar 

  • C.J.R. Sheppard, M. Gu: Image formation in two-photon fluorescence microscopy, Optik 86, 104–106 (1990)

    CAS  Google Scholar 

  • O. Nakamura: Three-dimensional imaging characteristics of laser scan fluorescence microscopy: two-photon excitation vs. single-photon excitation, Optik 93, 39–42 (1993)

    Google Scholar 

  • A. Periasamy, C. Noakes, P. Skoglund, R. Keller, A.E. Sutherland: Two-photon excitation fluorescence microscopy imaging in Xenopus and transgenic mouse embryos. In: Confocal and Two-Photon Microscopy: Foundations, Applications and Advances, ed. by A. Diaspro (Wiley, New York 2002) pp. 271–284

    Google Scholar 

  • K. König, U.K. Tirlapur: Cellular and subcellular perturbations during multiphoton microscopy. In: Confocal and Two-Photon Microscopy: Foundations, Applications and Advances, ed. by A. Diaspro (Wiley, New York 2002) pp. 191–206

    Google Scholar 

  • C.J. de Grauw, H.C. Gerritsen: Multiple time-gate module for fluorescence lifetime imaging, Appl. Spectrosc. 55(6), 670–678 (2001)

    Google Scholar 

  • C. Soeller, M.B. Cannell: Two-photon microscopy: imaging in scattering samples and three-dimensionally resolved flash photolysis, Microsc. Res. Tech. 47, 182–195 (1999)

    CAS  Google Scholar 

  • C. Buehler, K.H. Kim, C.Y. Dong, B.R. Masters, P.T.C. So: Innovations in two-photon deep tissue microscopy, IEEE Eng. Med. Biol. 185, 23–30 (1999)

    Google Scholar 

  • P.T.C. So, K.M. Berland, T. French, C.Y. Dong, E. Gratton: Two photon fluorescence microscopy: time resolved and intensity imaging. In: Fluorescence Imaging Spectroscopy and Microscopy, Chemical Analysis Series, Vol. 137, ed. by X.F. Wang, B. Herman (J. Wiley & Sons, New York 1996) pp. 351–373

    Google Scholar 

  • C. Soeller, M.B. Cannell: Construction of a two-photon microscope and optimisation of illumination pulse duration, Pflüg. Arch. Eur. J. Physiol. 432, 555–561 (1996)

    CAS  Google Scholar 

  • D.L. Wokosin, J.G. White: Optimization of the design of a multiple-photon excitation laser scanning fluorescence imaging system. In: Three-Dimensional Microscopy: Image, Acquisition and Processing, Proc. SPIE 2984, Vol. IV (1997) pp. 25–29

    Google Scholar 

  • S.M. Potter, C.M. Wang, P.A. Garrity, S.E. Fraser: Intravital imaging of green fluorescent protein using two-photon laser-scanning microscopy, Gene 173, 25–31 (1996)

    CAS  Google Scholar 

  • R. Wolleschensky, T. Feurer, R. Sauerbrey, U. Simon: Characterization and optimization of a laser scanning microscope in the femtosecond regime, Appl. Phys. B 67, 87–94 (1998)

    CAS  Google Scholar 

  • A. Diaspro, M. Corosu, P. Ramoino, M. Robello: Adapting a compact confocal microscope system to a two-photon excitation fluorescence imaging architecture, Microsc. Res. Tech. 47, 196–205 (1999)

    CAS  Google Scholar 

  • W.G. Wier, C.W. Balke, J.A. Michael, J.R. Mauban: A custom confocal and two-photon digital laser scanning microscope, Am. J. Physiol. 278, H2150–H2156 (2000)

    CAS  Google Scholar 

  • Y.P. Tan, I. Llano, A. Hopt, F. Wurriehausen, E. Neher: Fast scanning and efficient photodetection in a simple two-photon microscope, J. Neurosci. Methods 92, 123–135 (1999)

    CAS  Google Scholar 

  • Z.F. Mainen, M. Malectic-Savic, S.H. Shi, Y. Hayashi, R. Malinow, K. Svoboda: Two-photon imaging in living brain slices, Methods 18, 231–239 (1999)

    CAS  Google Scholar 

  • A. Majewska, G. Yiu, R. Yuste: A custom-made two-photon microscope and deconvolution system, Pflüg. Arch. Eur. J. Physiol. 441(2/3), 398–408 (2000)

    CAS  Google Scholar 

  • V. Iyer, T.M. Hoogland, B.E. Losavio, A.R. McQuiston, P. Saggau: Compact two-photon laser scanning microscope made from minimally modified commercial components. In: Multiphoton Microscopy in the Biomedical Sciences II, Proc. SPIE, Vol. 4620, ed. by A. Periasamy, P.T.C. So (2002) pp. 274–280

    Google Scholar 

  • B.R. Masters, P.T. So, E. Gratton: Multiphoton excitation fluorescence microscopy and spectroscopy of in vivo human skin, Biophys. J. 72, 2405–2412 (1997)

    CAS  Google Scholar 

  • V. Daria, C.M. Blanca, O. Nakamura, S. Kawata, C. Saloma: Image contrast enhancement for two-photon fluorescence microscopy in a turbid medium, Appl. Opt. 37, 7960–7967 (1998)

    CAS  Google Scholar 

  • D.L. Wokosin, W.B. Amos, J.G. White: Detection sensitivity enhancements for fluorescence imaging with multiphoton excitation microscopy, Proc. IEEE Eng. Med. Biol. Soc. 20, 1707–1714 (1998)

    Google Scholar 

  • D.B. Murphy: Fundamentals of Light Microscopy and Electronic Imaging (Wiley, New York 2001)

    Google Scholar 

  • Hamamatsu Photonics: Photomultiplier Tubes: Basics and Applications, 2nd edn. (Hamamatsu Photonics, Japan 1999)

    Google Scholar 

  • R.A. Farrer, M.J.R. Previte, C.E. Olson, L.A. Peyser, J.T. Fourkas, P.T.C. So: Single molecule detection with a two-photon fluorescence microscope with fast scanning capabilities and polarization sensitivity, Opt. Lett. 24, 1832–1834 (1999)

    CAS  Google Scholar 

  • K. Fujita, T. Takamatsu: Real-time in situ calcium imaging with single and two-photon confocal microscopy. In: Confocal and Two-photon Microscopy: Foundation, Application and Advances, ed. by A. Diaspro (John Wiley & Sons, New York 2001)

    Google Scholar 

  • H.T.M. van der Voort, K.C. Strasters: Restoration of confocal images for quantitative image analysis, J. Microsc. 178, 165–181 (1995)

    Google Scholar 

  • D.M. Shotton: Electronic light microscopy—present capabilities and future prospects, Histochem. Cell Biol. 104, 97–137 (1995)

    CAS  Google Scholar 

  • A. Diaspro, S. Annunziata, M. Robello: Single-pinhole confocal imaging of sub-resolution sparse objects using experimental point spread function and image restoration, Microsc. Res. Tech. 51, 464–468 (2000)

    CAS  Google Scholar 

  • W. Carrington: Imaging live cells in 3-D using wide field microscopy with image restoration. In: Confocal and Two-Photon Microscopy: Foundations, Applications and Advances, ed. by A. Diaspro (Wiley, New York 2002) pp. 33–346

    Google Scholar 

  • F. Difato, F. Mazzone, S. Scaglione, M. Fato, F. Beltrame, L. Kubinova, J. Janacek, P. Ramoino, G. Vicidomini, A. Diaspro: Improvement in volume estimation from confocal sections after image deconvolution, Microsc. Res. Tech. 64(2), 151–155 (2004)

    CAS  Google Scholar 

  • E. Gratton, M.J. van de Ven: Laser sources for confocal microscopy. In: Handbook of Confocal Microscopy, ed. by J.B. Pawley (Plenum, New York 1995) pp. 69–97

    Google Scholar 

  • P.E. Hanninen, S.W. Hell: Femtosecond pulse broadening in the focal region of a two-photon fluorescence microscope, Bioimaging 2, 117–121 (1994)

    Google Scholar 

  • K. König, H. Liang, M.W. Berns, B.J. Tromberg: Cell damage by near-IR microbeams, Nature 377, 20–21 (1995)

    Google Scholar 

  • W.G. Fisher, E.A. Watcher, M. Armas, C. Seaton: Titanium:sapphire laser as an excitation source in two-photon spectroscopy, Appl. Spectrosc. 51, 218–226 (1997)

    CAS  Google Scholar 

  • D.L. Wokosin, V.E. Centonze, J. White, D. Armstrong, G. Robertson, A.I. Ferguson: All-solid-state ultrafast lasers facilitate multiphoton excitation fluorescence imaging, IEEE J. Sel. Top. Quantum Electron. 2, 1051–1065 (1996)

    CAS  Google Scholar 

  • W. Denk, K.R. Delaney, A. Gelperin, D. Kleinfeld, B.W. Strowbridge, D.W. Tank, R. Yuste: Anatomical and functional imaging of neurons using two-photon laser scanning microscopy, J. Neurosci. Methods 54, 151–162 (1994)

    CAS  Google Scholar 

  • H.J. Koester, D. Baur, R. Uhl, S.W. Hell: Ca2+ fluorescence imaging with pico- and femtosecond two-photon excitation: Signal and photodamage, Biophys. J. 77, 2226–2236 (1999)

    CAS  Google Scholar 

  • K. König, H. Liang, M.W. Berns, B.J. Tromberg: Cell damage in near infrared multimode optical traps as a result of multiphoton absorption, Opt. Lett. 21, 1090–1092 (1996)

    Google Scholar 

  • K. König, S. Boehme, N. Leclerc, R. Ahuja: Time-gated autofluorescence microscopy of motile green microalga in an optical trap, Cell. Mol. Biol. 44, 763–770 (1998)

    Google Scholar 

  • J.B. Guild, C. Xu, W.W. Webb: Measurement of group delay dispersion of high numerical aperture objective lenses using two-photon excited fluorescence, Appl. Opt. 36, 397–401 (1997)

    CAS  Google Scholar 

  • R. Wolleschensky, M. Dickinson, S.E. Fraser: Group velocity dispersion and fiber delivery in multiphoton laser scanning microscopy. In: Confocal and Two-Photon Microscopy: Foundations, Applications and Advances, ed. by A. Diaspro (Wiley, New York 2002) pp. 171–190

    Google Scholar 

  • K. de Grauw, H. Gerritsen: Aberrations and penetration depth in confocal and two-photon microscopy. In: Confocal and Two-Photon Microscopy: Foundations, Applications and Advances, ed. by A. Diaspro (Wiley, New York 2002) pp. 153–170

    Google Scholar 

  • M. Gu, X. Gan, A. Kisteman, M.G. Xu: Comparison of penetration depth between two-photon excitation and single-photon excitation in imaging through turbid tissue media, Appl. Phys. Lett. 77(10), 1551–1553 (2000)

    CAS  Google Scholar 

  • C. Saloma, C. Saloma-Palmes, H. Kondoh: Site-specific confocal fluorescence imaging of biological microstructures in a turbid medium, Phys. Med. Biol. 43, 1741 (1998)

    CAS  Google Scholar 

  • A. Schonle, S.W. Hell: Heating by absorption in the focus of an objective lens, Opt. Lett. 23, 325–327 (1998)

    CAS  Google Scholar 

  • R.M. Tyrrell, S.M. Keyse: The interaction of UVA radiation with cultured cells, J. Photochem. Photobiol. B 4, 349–361 (1990)

    CAS  Google Scholar 

  • J.N. Post, K.A. Lidke, B. Rieger, D.J. Arndt-Jovin: One- and two-photon photoactivation of a paGFP-fusion protein in live Drosophila embryos, FEBS Letters 579, 325–330 (2005)

    Google Scholar 

  • M.L. Gostkowski, R. Allen, M.L. Plenert, E. Okerberg, M.J. Gordon, J.B. Shear: Multiphoton-excited serotonin photochemistry, Biophys. J. 86(5), 3223–3229 (2004)

    CAS  Google Scholar 

  • D.L. Wokosin, C.M. Loughrey, G.L. Smith: Characterization of a range of Fura dyes with two-photon excitation, Biophys. J. 86(3), 1726–1738 (2004)

    CAS  Google Scholar 

  • Y. Wang, X.F. Wang, C. Wang, H. Ma: Simultaneously multi-parameter determination of hematonosis cell apoptosis by two-photon and confocal laser scanning microscopy, J. Clin. Lab. Anal. 18(5), 271–275 (2004)

    Google Scholar 

  • A. Diaspro, G. Chirico, F. Federici, F. Cannone, S. Beretta, M. Robello: Two-photon microscopy and spectroscopy based on a compact confocal scanning head, J. Biomed. Opt. 6, 300–310 (2001)

    CAS  Google Scholar 

  • B.H. Cumpston, S.P. Ananthavel, S. Barlow, D.L. Dyer, J.E. Ehrlich, L.L. Erskine, A.A. Heikal, S.M. Kuebler, I.Y.S. Lee, D. McCord-Maughon, J. Qin, H. Röckel, M. Rumi, X.L. Wu, S.R. Marder, J.W. Perry: Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication, Nature 398(6722), 51–54 (1999)

    CAS  Google Scholar 

  • S. Kawata, H.-B. Sun, T. Tanaka, K. Takada: Finer features for functional microdevices, Nature 412, 697–698 (2001)

    CAS  Google Scholar 

  • C.L. Caylor, I. Dobrianov, C. Kimmer, R.E. Thorne, W. Zipfel, W.W. Webb: Two-photon fluorescence imaging of impurity distributions in protein crystals, Phys. Rev. E 59, 3831–3834 (1999)

    Google Scholar 

  • U.K. Tirlapur, K. König: Two-photon near infrared femtosecond laser scanning microscopy in plant biology. In: Confocal and Two-Photon Microscopy: Foundations, Applications and Advances, ed. by A. Diaspro (Wiley, New York 2002) pp. 449–468

    Google Scholar 

  • E.J. Yoder, D. Kleinfeld: Cortical imaging through the intact mouse skull using two-photon excitation laser scanning microscopy, Microsc. Res. Tech. 56(4), 304–305 (2002)

    Google Scholar 

  • A. Diaspro, D. Silvano, S. Krol, O. Cavalleri, A. Gliozzi: Single living cell encapsulation in nano-organized polyelectrolyte shells, Langmuir 18, 5047–5050 (2002)

    CAS  Google Scholar 

  • A. Diaspro, P. Fronte, M. Raimondo, M. Fato, G. De Leo, F. Beltrame, F. Cannone, G. Chirico, P. Ramoino: Functional imaging of living paramecium by means of confocal and two-photon excitation fluorescence microscopy. In: Functional Imaging, Proc. SPIE, Vol. 4622, ed. by D. Farkas (2002) pp. 47–53

    Google Scholar 

  • A. Zoumi, X. Lu, G.S. Kassab, B.J. Tromberg: Imaging coronary artery microstructure using second-harmonic and two-photon fluorescence microscopy, Biophys. J. 87(4), 2778–2786 (2004)

    CAS  Google Scholar 

  • L. Novotny, E.J. Sanchez, X.S. Xie: Near-field optical imaging using metal tips illuminated by higher-order Hermite–Gaussian beams, Ultramicroscopy 71(1–4), 21–29 (1998)

    CAS  Google Scholar 

  • E.J. Sánchez, L. Novotny, X.S. Xie: Near-field fluorescence microscopy based on two-photon excitation with metal tips, Phys. Rev. Lett. 82(20), 4014–4017 (1999)

    Google Scholar 

  • J.M. Gerton, L.A. Wade, G.A. Lessard, Z. Ma, S.R. Quake: Tip-enhanced fluorescence microscopy at 10 nanometer resolution, Phy. Rev. Lett. 93(18), 180801 (2004)

    Google Scholar 

  • A. Diaspro, F. Federici, C. Viappiani, S. Krol, M. Pisciotta, G. Chirico, F. Cannone, A. Gliozzi: Two-photon photolysis of 2-nitrobenz-aldehyde monitored by fluorescent-labeled nanocapsules, J. Phy. Chem. B 107(40), 11008–11012 (2003)

    CAS  Google Scholar 

  • J.D. Bhawalkar, N.D. Kumar, C.F. Zhao, P.N. Prasad: Two-photon photodynamic therapy. J. Clin. Laser Med. Surg. 15, 201–204 (1997)

    Google Scholar 

  • G.L. Duveneck, M.A. Bopp, M. Ehrat, M. Haiml, U. Keller, M.A. Bader, G. Marowsky, S. Soria: Evanescent-field-induced two-photon fluorescence: Excitation of macroscopic areas of planar waveguides, Appl. Phys. B 73, 869–871 (2001)

    CAS  Google Scholar 

  • A. Diaspro: Optical Fluorescence Microscopy: From the Spectral to the Nano Dimension (Springer, New York 2010)

    Google Scholar 

  • A. Diaspro (Ed.): Nanoscopy and Multidimensional Optical Fluorescence Microscopy (CRC, Boca Raton 2010)

    Google Scholar 

  • C.A. Combs, H. Shroff: Fluorescence microscopy: A concise guide to current imaging methods, Curr. Protoc. Neurosci. 79, 2.1.1–2.1.25 (2017)

    Google Scholar 

  • L. Schermelleh, R. Heintzmann, H. Leonhardt: A guide to super-resolution fluorescence microscopy, J. Cell Biol. 190(2), 165–175 (2010)

    CAS  Google Scholar 

  • A. Diaspro, M. van Zandvoort: Super-Resolution Imaging in Biomedicine (CRC, Boca Raton 2016)

    Google Scholar 

  • J. Pawley: Handbook of Biological Confocal Microscopy (Springer, Boston 2010)

    Google Scholar 

  • P.P. Mondal, A. Diaspro: Fundamentals of Fluorescence Microscopy (Springer, Dordrecht 2013)

    Google Scholar 

  • B. Neupane, F.S. Ligler, G. Wang: Review of recent developments in stimulated emission depletion microscopy: applications on cell imaging, J. Biomed. Opt. 19(8), 080901 (2014)

    Google Scholar 

  • S.W. Hell, S.J. Sahl, M. Bates, X. Zhuang, R. Heintzmann, M.J. Booth, J. Bewersdorf, G. Shtengel, H. Hess, P. Tinnefeld, A. Honigmann, S. Jakobs, I. Testa, L. Cognet, B. Lounis, H. Ewers, S.J. Davis, C. Eggeling, D. Klenerman, K.I. Willig, G. Vicidomini, M. Castello, A. Diaspro, T. Cordes: The 2015 super-resolution microscopy roadmap, J. Phys. D: Appl. Phys. 48(44), 443001–443036 (2015)

    Google Scholar 

  • C. Eggeling, K.I. Willig, S.J. Sahl, S.W. Hell: Lens-based fluorescence nanoscopy, Q. Rev. Biophys. 48(2), 178–243 (2015)

    CAS  Google Scholar 

  • Z. Zeng, P. Xi: Advances in three-dimensional super-resolution nanoscopy, Microsc. Res. Tech. 79(10), 893–898 (2016)

    Google Scholar 

  • S.J. Sahl, S.W. Hell, S. Jakobs: Fluorescence nanoscopy in cell biology, Nat. Publ. Group 18(11), 685–701 (2017)

    CAS  Google Scholar 

  • G. Vicidomini, P. Bianchini, A. Diaspro: STED super-resolved microscopy, Nat. Methods 15(3), 173–182 (2018)

    CAS  Google Scholar 

  • R. Won: The super-resolution debate, Nat. Photonics 12(5), 259–260 (2018)

    CAS  Google Scholar 

  • Y. Garini, B.J. Vermolen, I.T. Young: From micro to nano: recent advances in high-resolution microscopy, Curr. Opin. Biotechnol. 16(1), 3–12 (2005)

    CAS  Google Scholar 

  • A. Diaspro: Circumventing the diffraction limit, Il Nuovo Saggiatore 30(5), 45–51 (2014)

    Google Scholar 

  • G. Toraldo di Francia: Resolving power and information, JOSA 45(7), 497–501 (1955)

    Google Scholar 

  • G. Toraldo di Francia: Sur les lois générales de la Diffraction-Rapport critique, Revue dOptique 28(11), 597–611 (1949)

    Google Scholar 

  • C.J.R. Sheppard: Resolution and super-resolution, Microsc. Res. Tech. 80(6), 590–598 (2017)

    Google Scholar 

  • E. Abbe: Beiträge zur Theorie des Mikroskops und der mikroskopischen Wahrnehmung, Arch. Mikrosk. Anat. 9(1), 413–418 (1873)

    Google Scholar 

  • J.W. Goodman: Introduction to Fourier Optics (McGraw-Hill, San Francisco 1968)

    Google Scholar 

  • E. Abbe, H. Fripp: A contribution to the theory of the micro-scope, and the nature of microscopic vision, Proc. Bristol Naturalists Soc. New Ser. 1, 200–258 (1874)

    Google Scholar 

  • H.D. Luke: The origins of the sampling theorem, IEEE TBE 37(4), 106 (1999)

    Google Scholar 

  • J.W. Lichtman, J.-A. Conchello: Fluorescence microscopy, Nat. Meth. 2(12), 910–919 (2005)

    CAS  Google Scholar 

  • M. Gustafsson: Super-resolution light microscopy goes live, Nat. Methods 5, 385–387 (2008)

    CAS  Google Scholar 

  • R. Heintzmann, C.J.R. Sheppard: The sampling limit in fluorescence microscopy, Micron 38(2), 145–149 (2007)

    Google Scholar 

  • M. Castello, C.J.R. Sheppard, A. Diaspro, G. Vicidomini: Image scanning microscopy with a quadrant detector, Opt. Lett. 40(22), 5355–5354 (2015)

    Google Scholar 

  • C.J.R. Sheppard: 10.12 The scanning optical microscope, IEEE J. Quantum Electron. 13(9), 861–861 (1977)

    Google Scholar 

  • C.J.R. Sheppard, M. Castello, G. Tortarolo, G. Vicidomini, A. Diaspro: Image formation in image scanning microscopy, including the case of two-photon excitation, J. Opt. Soc. Am. A 34(8), 1339–1312 (2017)

    Google Scholar 

  • C.J.R. Sheppard, S. Roth, R. Heintzmann, M. Castello, G. Vicidomini, R. Chen, X. Chen, A. Diaspro: Interpretation of the optical transfer function: significance for image scanning microscopy, Optics 24(24), 27280–27287 (2016)

    Google Scholar 

  • E.H.K. Stelzer: Light-sheet fluorescence microscopy for quantitative biology, Nat. Methods 12(1), 23–26 (2015)

    CAS  Google Scholar 

  • R. Yuste: Fluorescence microscopy today, Nat. Meth. 2(12), 902–904 (2005)

    CAS  Google Scholar 

  • D.M. Jameson (Ed.): Perspectives on Fluorescence, Vol. 17 (Springer, Cham 2016)

    Google Scholar 

  • J.R. Lakowicz: Principles Topics in Fluorescence Spectroscopy, Vol. 2 (Springer, New York 1991)

    Google Scholar 

  • R.Y. Tsien: The green fluorescent protein, Annu. Rev. Biochem. 67(1), 509–544 (1998)

    CAS  Google Scholar 

  • A. Diaspro: Shine on … proteins, Microsc. Res. Tech. 69(3), 149–151 (2006)

    Google Scholar 

  • A. Esposito, S. Schlachter, G.S.K. Schierle, A.D. Elder, A. Diaspro, F.S. Wouters, C.F. Kaminski, A.I. Iliev: Quantitative fluorescence microscopy techniques, Methods Mol. Biol. 586, 117–142 (2009)

    CAS  Google Scholar 

  • T. Ha, P. Tinnefeld: Photophysics of fluorescent probes for single-molecule biophysics and super-resolution imaging, Annu. Rev. Phys. Chem. 63(1), 595–617 (2012)

    CAS  Google Scholar 

  • I. Testa, D. Mazza, S. Barozzi, M. Faretta, A. Diaspro: Blue-light (488 nm)-irradiation-induced photoactivation of the photoactivatable green fluorescent protein, Appl. Phy.s Lett. 91(13), 133902 (2007)

    Google Scholar 

  • I. Testa, M. Garrè, D. Parazzoli, S. Barozzi, I. Ponzanelli, D. Mazza, M. Faretta, A. Diaspro: Photoactivation of pa-GFP in 3-D: Optical tools for spatial confinement, Eur. Biophys. J. 37(7), 1219–1227 (2008)

    CAS  Google Scholar 

  • L.M. Almassalha, G.M. Bauer, J.E. Chandler, S. Gladstein, L. Cherkezyan, Y. Stypula-Cyrus, S. Weinberg, D. Zhang, P. Thusgaard Ruhoff, H.K. Roy, H. Subramanian, N.S. Chandel, I. Szleifer, V. Backman: Label-free imaging of the native, living cellular nanoarchitecture using partial-wave spectroscopic microscopy, Proc. Natl. Acad. Sci. U.S.A. 113(42), E6372–E6381 (2016)

    CAS  Google Scholar 

  • A. Diaspro, G. Chirico, M. Collini: Two-photon fluorescence excitation and related techniques in biological microscopy, Q. Rev. Biophys. 38, 97–166 (2005)

    CAS  Google Scholar 

  • F. Balzarotti, Y. Eilers, K.C. Gwosch, A.H. Gynnå, V. Westphal, F.D. Stefani, J. Elf, S.W. Hell: Nanometer resolution imaging and tracking of fluorescent molecules with minimal photon fluxes, Science 355(6325), 606–612 (2017)

    CAS  Google Scholar 

  • A. Diaspro, G. Chirico, C. Usai, P. Ramoino, J. Dobrucki: Photobleaching. In: Handbook Of Biological Confocal Microscopy, Vol. 39, ed. by J. Pawley (Springer, Boston 2006) pp. 690–702

    Google Scholar 

  • A. Diaspro, I. Cainero, L. Lanzanò, P. Bianchini, G. Vicidomini, F.C. Zanacchi, L. Pesce, S. Pelicci, M. Oneto, M. Di Bona, M. Faretta, P. Barboro, A. Le Gratiet: A liquid tunable microscope as a new paradigm in optical microscopy to paint 4-D chromatin organisation in the cell nucleus, Biophys. J. 114(1), 347a (2018)

    Google Scholar 

  • A. Diaspro, N. Anthony, P. Bianchini, I. Cainero, M. Di Bona, L. Lanzanò, A. Le Gratiet, R. Marongiu, M. Oneto, S. Pelicci, L. Pesce: LIQUITOPY®: A liquid tunable microscope to study chromatin organization in the cell nucleus, Microsc. Microanal. 24(1), 1368–1369 (2018)

    Google Scholar 

  • J.G. McNally, C. Preza, J.A. Conchello, L.J. Thomas: Artifacts in computational optical-sectioning microscopy, J. Opt. Soc. Am. A 11(3), 1056–1067 (1994)

    CAS  Google Scholar 

  • A. Diaspro, P. Bianchini, F.C. Zanacchi, G. Vicidomini: Fluorescence three-dimensional optical imaging. In: Encyclopedia of Biophysics, Vol. 828, ed. by G. Roberts (Springer, Berlin, Heidelberg 2013) pp. 824–826

    Google Scholar 

  • M.T. Strauss, F. Schueder, D. Haas, P.C. Nickels, R. Jungmann: Quantifying absolute addressability in DNA origami with molecular resolution, Nat. Commun. 9, 1600 (2018)

    Google Scholar 

  • F.C. Zanacchi, C. Manzo, A.S. Alvarez, N.D. Derr, M.F. Garcia-Parajo, M. Lakadamyali: A DNA origami platform for quantifying protein copy number in super-resolution, Nat. Meth. 14(8), 789–792 (2017)

    CAS  Google Scholar 

  • W.O. Saxton, W. Baumeister: The correlation averaging of a regularly arranged bacterial cell envelope protein, J. Microsc. 127(2), 127–138 (1982)

    CAS  Google Scholar 

  • R.P.J. Nieuwenhuizen, K.A. Lidke, M. Bates, D.L. Puig, D. Grunwald, S. Stallinga, B. Rieger: Measuring image resolution in optical nanoscopy, Nat. Meth. 10(6), 557–562 (2013)

    CAS  Google Scholar 

  • G. Tortarolo, M. Castello, A. Diaspro, S. Koho, G. Vicidomini: Evaluating image resolution in stimulated emission depletion microscopy, Optica 5(1), 32–35 (2018)

    CAS  Google Scholar 

  • C.J.R. Sheppard: Fundamentals of superresolution, Micron 38(2), 165–169 (2007)

    Google Scholar 

  • C. Cremer, B.R. Masters: Resolution enhancement techniques in microscopy, EPJ H 38(3), 281–344 (2013)

    Google Scholar 

  • W.E. Moerner: Single-molecule spectroscopy, imaging, and photocontrol: Foundations for super-resolution microscopy (Nobel Lecture), Angew. Chem. Int. Ed. Engl. 54(28), 8067–8093 (2015)

    CAS  Google Scholar 

  • E. Betzig, S.W. Hell, W.E. Moerner: The Nobel Prize in Chemistry 2014, http://www.nobelprize.org/nobel_prizes/chemistry/laureates/2014/ (2014)

  • N.A. Jensen, J.G. Danzl, K.I. Willig, F. Lavoie-Cardinal, T. Brakemann, S.W. Hell, S. Jakobs: Coordinate-targeted and coordinate-stochastic super-resolution microscopy with the reversibly switchable fluorescent protein dreiklang, Chem. Phys. Chem. 15(4), 756–762 (2014)

    CAS  Google Scholar 

  • M. Gustafsson: In-vivo super-resolution microscopy by structured illumination, Biophys. J. 16(3, Suppl. 1), 202a (2009)

    Google Scholar 

  • H. Geertsema, H. Ewers: Expansion microscopy passes its first test, Nat. Methods 13(6), 481–482 (2016)

    CAS  Google Scholar 

  • S.J. Sahl, W.E. Moerner: Super-resolution fluorescence imaging with single molecules, Curr. Opin. Struct. Biol. 23(5), 778–787 (2013)

    CAS  Google Scholar 

  • E. Betzig, G.H. Patterson, R. Sougrat, O.W. Lindwasser, S. Olenych, J.S. Bonifacino, M.W. Davidson, J. Lippincott-Schwartz, H.F. Hess: Imaging intracellular fluorescent proteins at nanometer resolution, Science 313(5793), 1642–1645 (2006)

    CAS  Google Scholar 

  • S.T. Hess, T.P.K. Girirajan, M.D. Mason: Ultra-high resolution imaging by fluorescence photoactivation localization microscopy, Biophys. J. 91(11), 4258–4272 (2006)

    CAS  Google Scholar 

  • M.J. Rust, M. Bates, X. Zhuang: Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM), Nat. Meth. 3(10), 793–796 (2006)

    CAS  Google Scholar 

  • J. Schnitzbauer, M.T. Strauss, T. Schlichthaerle, F. Schueder, R. Jungmann: Super-resolution microscopy with DNA-PAINT, Nat. Protoc. 12(6), 1198–1228 (2017)

    CAS  Google Scholar 

  • F. Cella Zanacchi, Z. Lavagnino, M. Perrone Donnorso, A. Del Bue, L. Furia, M. Faretta, A. Diaspro: Live-cell 3-D super-resolution imaging in thick biological samples, Nat. Meth. 8(12), 1047–1049 (2011)

    Google Scholar 

  • H. Deschout, F.C. Zanacchi, F. Cella Zanacchi, M. Mlodzianoski, A. Diaspro, J. Bewersdorf, S.T. Hess, K. Braeckmans: Precisely and accurately localizing single emitters in fluorescence microscopy, Nat. Meth. 11(3), 253–266 (2014)

    CAS  Google Scholar 

  • A. Dupont, D.C. Lamb: Nanoscale three-dimensional single particle tracking, Nanoscale 3(11), 4532–4541 (2011)

    CAS  Google Scholar 

  • G. Sancataldo, L. Scipioni, T. Ravasenga, L. Lanzanò, A. Diaspro, A. Barberis, M. Duocastella: Three-dimensional multiple-particle tracking with nanometric precision over tunable axial ranges, Optica 4(3), 367–373 (2017)

    CAS  Google Scholar 

  • M.H. Ulbrich, E.Y. Isacoff: Subunit counting in membrane-bound proteins, Nat. Meth. 4(4), 319–321 (2007)

    CAS  Google Scholar 

  • C.G. Specht, I. Izeddin, P.C. Rodriguez, M. El Beheiry, P. Rostaing, X. Darzacq, M. Dahan, A. Triller: Quantitative nanoscopy of inhibitory synapses: Counting gephyrin molecules and receptor binding sites, Neuron 79(2), 308–321 (2013)

    CAS  Google Scholar 

  • N. Durisic, A.G. Godin, C.M. Wever, C.D. Heyes, M. Lakadamyali, J.A. Dent: Stoichiometry of the human glycine receptor revealed by direct subunit counting, J. Neurosci. 32(37), 12915–12920 (2012)

    CAS  Google Scholar 

  • M.A. Ricci, C. Manzo, M.F. García-Parajo, M. Lakadamyali, M.P. Cosma: Chromatin fibers are formed by heterogeneous groups of nucleosomes in vivo, Cell 160(6), 1145–1158 (2015)

    CAS  Google Scholar 

  • C. Karathanasis, F. Fricke, G. Hummer, M. Heilemann: Molecule counts in localization microscopy with organic fluorophores, Chem. Phys. Chem. 18(8), 942–948 (2017)

    CAS  Google Scholar 

  • J.J. Schmied, M. Raab, C. Forthmann, E. Pibiri, B. Wünsch, T. Dammeyer, P. Tinnefeld: DNA origami-based standards for quantitative fluorescence microscopy, Nat. Protoc. 9(6), 1367–1391 (2014)

    CAS  Google Scholar 

  • R. Jungmann, M.S. Avendaño, M. Dai, J.B. Woehrstein, S.S. Agasti, Z. Feiger, A. Rodal, P. Yin: Quantitative super-resolution imaging with qPAINT, Nat. Meth. 13(5), 439–442 (2016)

    CAS  Google Scholar 

  • N.D. Derr, B.S. Goodman, R. Jungmann, A.E. Leschziner, W.M. Shih, S.L. Reck-Peterson: Tug-of-war in motor protein ensembles revealed with a programmable DNA origami Scaffold, Science 338(6107), 662–665 (2012)

    CAS  Google Scholar 

  • F. Pennacchietti, S. Vascon, T. Nieus, C. Rosillo, S. Das, S.K. Tyagarajan, A. Diaspro, A. Del Bue, E.M. Petrini, A. Barberis, F. Cella Zanacchi: Nanoscale molecular reorganization of the inhibitory postsynaptic density is a determinant of GABAergic synaptic potentiation, J. Neurosci. 37(7), 1747–1756 (2017)

    CAS  Google Scholar 

  • H.D. MacGillavry, Y. Song, S. Raghavachari, T.A. Blanpied: Nanoscale scaffolding domains within the postsynaptic density concentrate synaptic AMPA receptors, Neuron 78(4), 615–622 (2013)

    CAS  Google Scholar 

  • A.-H. Tang, H. Chen, T.P. Li, S.R. Metzbower, H.D. MacGillavry, T.A. Blanpied: A trans-synaptic nanocolumn aligns neurotransmitter release to receptors, Nature 536(7615), 210–214 (2016)

    CAS  Google Scholar 

  • T. Nozaki, R. Imai, M. Tanbo, R. Nagashima, S. Tamura, T. Tani, Y. Joti, M. Tomita, K. Hibino, M.T. Kanemaki, K.S. Wendt, Y. Okada, T. Nagai, K. Maeshima: Dynamic organization of chromatin domains revealed by super-resolution live-cell imaging, Mol. Cell 67(2), 282–293.e7 (2017)

    CAS  Google Scholar 

  • F.C. Zanacchi, Z. Lavagnino, M. Faretta, L. Furia: Light-sheet confined super-resolution using two-photon photoactivation, PLOS ONE 8(7), e67667 (2013)

    Google Scholar 

  • S.W. Hell, J. Wichmann: Breaking the diffraction resolution limit by stimulated emission: Stimulated-emission-depletion fluorescence microscopy, Opt. Lett. 19(11), 780–782 (1994)

    CAS  Google Scholar 

  • T.A. Klar, S. Jakobs, M. Dyba, A. Egner, S.W. Hell: Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission, Proc. Natl. Acad. Sci. U.S.A. 97(15), 8206–8210 (2000)

    CAS  Google Scholar 

  • P. Bianchini, C. Peres, M. Oneto, S. Galiani, G. Vicidomini, A. Diaspro: STED nanoscopy: A glimpse into the future, Cell Tissue Res. 360(1), 143–150 (2015)

    CAS  Google Scholar 

  • G. Vicidomini, G. Moneron, K.Y. Han, V. Westphal, H. Ta, M. Reuss, J. Engelhardt, C. Eggeling, S.W. Hell: Sharper low-power STED nanoscopy by time gating, Nat. Methods 8(7), 571–573 (2011)

    CAS  Google Scholar 

  • G. Vicidomini, I.C. Hernández, P. Bianchini, A. Diaspro: STED microscopy with time-gated detection: Benefits and limitations, Biophys. J. 104(2), 667A–668A (2013)

    Google Scholar 

  • M. Castello: Gated-sted microscopy with subnanosecond pulsed fiber laser for reducing photobleaching, Microsc. Res. Tech. 79(9), 785–791 (2016)

    CAS  Google Scholar 

  • I.C. Hernández, M. D'Amora, A. Diaspro, G. Vicidomini: Influence of laser intensity noise on gated CW-STED microscopy, Laser Phys. Lett. 11(9), 095603 (2014)

    Google Scholar 

  • L. Lanzanò, L. Scipioni, M. Castello, P. Bianchini: Role of the pico-nano-second temporal dimension in STED microscopy. In: Perspectives in Fluorescence, ed. by D. Jameson (Springer, Cham 2016) pp. 311–328

    Google Scholar 

  • L. Lanzanò, I. Coto Hernández, M. Castello, E. Gratton, A. Diaspro, G. Vicidomini: Encoding and decoding spatio-temporal information for super-resolution microscopy, Nat. Commun. 6(1), 1347 (2015)

    Google Scholar 

  • M. Dyba, S. Jakobs, S.W. Hell: Immunofluorescence stimulated emission depletion microscopy, Nat. Biotechnol. 21(11), 1303–1304 (2003)

    CAS  Google Scholar 

  • B. Harke, J. Keller, C.K. Ullal, V. Westphal, A. Schönle, S.W. Hell: Resolution scaling in STED microscopy, Opt. Express 16(6), 4154–4162 (2008)

    Google Scholar 

  • S.W. Hell, S.J. Sahl, M. Bates, X. Zhuang, R. Heintzmann, M.J. Booth, J. Bewersdorf, G. Shtengel, H. Hess, P. Tinnefeld, A. Honigmann, S. Jakobs, I. Testa, L. Cognet, B. Lounis, H. Ewers, S.J. Davis, C. Eggeling, D. Klenerman, K.I. Willig, G. Vicidomini, M. Castello, A. Diaspro, T. Cordes: The 2015 super-resolution microscopy roadmap, J.Phys. D: Appl. Phys. 48, 443001 (2015)

    Google Scholar 

  • S. Hell, M. Kroug: Ground-state-depletion fluorscence microscopy: a concept for breaking the diffraction resolution limit, Appl. Phys. B Lasers Opt. 60(5), 495–497 (1995)

    Google Scholar 

  • M. Hofmann, C. Eggeling, S. Jakobs, S.W. Hell: Breaking the diffraction barrier in fluorescence microscopy at low light intensities by using reversibly photoswitchable proteins, Proc. Natl. Acad. Sci. U.S.A. 102(49), 17565–17569 (2005)

    CAS  Google Scholar 

  • M.A. Schwentker, H. Bock, M. Hofmann, S. Jakobs, J. Bewersdorf, C. Eggeling, S.W. Hell: Wide-field subdiffraction RESOLFT microscopy using fluorescent protein photoswitching, Microsc. Res. Tech. 70(3), 269–280 (2007)

    CAS  Google Scholar 

  • T. Grotjohann, I. Testa, M. Leutenegger, H. Bock, N.T. Urban, F. Lavoie-Cardinal, K.I. Willig, C. Eggeling, S. Jakobs, S.W. Hell: Diffraction-unlimited all-optical imaging and writing with a photochromic GFP, Nature 478(7368), 204–208 (2011)

    CAS  Google Scholar 

  • I. Testa, N.T. Urban, S. Jakobs, C. Eggeling, K.I. Willig, S.W. Hell: NeuroResource, Neuron 75(6), 992–1000 (2012)

    CAS  Google Scholar 

  • B. Harke, W. Dallari, G. Grancini, D. Fazzi, F. Brandi, A. Petrozza, A. Diaspro: Polymerization inhibition by triplet state absorption for nanoscale lithography, Adv. Mater. 25(6), 904–909 (2013)

    CAS  Google Scholar 

  • M. Elmeranta, G. Vicidomini, M. Duocastella: Characterization of nanostructures fabricated with two-beam DLW lithography using STED microscopy, Opt. Mater. 6(10), 3169–3179 (2016)

    CAS  Google Scholar 

  • C. Silien, N. Liu, N. Hendaoui, S.A.M. Tofail, A. Peremans: A framework for far-field infrared absorption microscopy beyond the diffraction limit, Opt. Express 20(28), 29694–29704 (2012)

    CAS  Google Scholar 

  • P. Wang, M.N. Slipchenko, J. Mitchell, C. Yang, E.O. Potma, X. Xu, J.-X. Cheng: Far-field imaging of non-fluorescent species with subdiffraction resolution, Nat. Photonics 7(6), 449–453 (2013)

    Google Scholar 

  • N. Liu, M. Kumbham, I. Pita, Y. Guo, P. Bianchini, A. Diaspro, S.A.M. Tofail, A. Peremans, C. Silien: Far-field subdiffraction imaging of semiconductors using nonlinear transient absorption differential microscopy, ACS Photonics 3(3), 478–485 (2016)

    CAS  Google Scholar 

  • J. Keller, A. Schoenle, S.W. Hell: Efficient fluorescence inhibition patterns for RESOLFT microscopy, Opt. Express 15(6), 3361–3371 (2007)

    Google Scholar 

  • S. Galiani, B. Harke, G. Vicidomini, G. Lignani, F. Benfenati, A. Diaspro, P. Bianchini: Strategies to maximize the performance of a STED microscope, Opt. Express 20(7), 7362–7374 (2012)

    Google Scholar 

  • B. Harke, C.K. Ullal, J. Keller, S.W. Hell: Three-dimensional nanoscopy of colloidal crystals, Nano Lett. 8(5), 1309–1313 (2008)

    CAS  Google Scholar 

  • R. Schmidt, C.A. Wurm, S. Jakobs, J. Engelhardt, A. Egner, S.W. Hell: Spherical nanosized focal spot unravels the interior of cells, Nat. Meth. 5(6), 539–544 (2008)

    CAS  Google Scholar 

  • G. Donnert, J. Keller, C.A. Wurm, S.O. Rizzoli, V. Westphal, A. Schönle, R. Jahn, S. Jakobs, C. Eggeling, S.W. Hell: Two-color far-field fluorescence nanoscopy, Biophys. J. 92(8), L67–L69 (2007)

    CAS  Google Scholar 

  • L. Meyer, D. Wildanger, R. Medda, A. Punge, S.O. Rizzoli, G. Donnert, S.W. Hell: Dual-color STED microscopy at 30-nm focal-plane resolution, Small 4(8), 1095–1100 (2008)

    CAS  Google Scholar 

  • H. Blom, D. Rönnlund, L. Scott, Z. Spicarova, V. Rantanen, J. Widengren, A. Aperia, H. Brismar: Nearest neighbor analysis of dopamine D1 receptors and Na+-K+-ATPases in dendritic spines dissected by STED microscopy, Microsc. Res. Tech. 75(2), 220–228 (2011)

    Google Scholar 

  • M. Leutenegger, C. Eggeling, S.W. Hell: Analytical description of STED microscopy performance, Opt. Express 18(25), 26417–26429 (2010)

    CAS  Google Scholar 

  • K.I. Willig, B. Harke, R. Medda, S.W. Hell: STED microscopy with continuous wave beams, Nat. Methods 4(11), 915–918 (2007)

    CAS  Google Scholar 

  • G. Vicidomini, I.C. Hernández, M. D'Amora, F.C. Zanacchi, P. Bianchini, A. Diaspro: Gated CW-STED microscopy: a versatile tool for biological nanometer scale investigation, Methods 66(2), 124–130 (2014)

    CAS  Google Scholar 

  • I.C. Hernández, C. Peres, F.C. Zanacchi, M. D'Amora, S. Christodoulou, P. Bianchini, A. Diaspro, G. Vicidomini: A new filtering technique for removing anti-Stokes emission background in gated CW-STED microscopy, J. Biophotonics 7(6), 376–380 (2014)

    Google Scholar 

  • M. Castello, A. Diaspro, G. Vicidomini: Multi-images deconvolution improves signal-to-noise ratio on gated stimulated emission depletion microscopy, Appl. Phys. Lett. 105(23), 234106 (2014)

    Google Scholar 

  • G. Moneron, S.W. Hell: Two-photon excitation STED microscopy, Opt. Express 17(17), 14567–14573 (2009)

    CAS  Google Scholar 

  • J.B. Ding, K.T. Takasaki, B.L. Sabatini: Supraresolution imaging in brain slices using stimulated-emission depletion two-photon laser scanning microscopy, Neuron 63(4), 429–437 (2009)

    CAS  Google Scholar 

  • P. Bethge, R. Chéreau, E. Avignone, G. Marsicano, U.V. Nägerl: Two-photon excitation STED microscopy in two colors in acute brain slices, Biophys. J. 104(4), 778–785 (2013)

    CAS  Google Scholar 

  • I. Coto Hernández, M. Castello, L. Lanzanò, M. D'Amora, P. Bianchini, A. Diaspro, G. Vicidomini: Two-photon excitation STED microscopy with time-gated detection, Sci. Rep. 6(1), 954 (2016)

    Google Scholar 

  • P. Bianchini, B. Harke, S. Galiani, G. Vicidomini, A. Diaspro: Single-wavelength two-photon excitation-stimulated emission depletion (SW2PE-STED) superresolution imaging, Proc. Natl. Acad. Sci. U.S.A. 109(17), 6390–6393 (2012)

    CAS  Google Scholar 

  • M. Dyba, S.W. Hell: Photostability of a fluorescent marker under pulsed excited-state depletion through stimulated emission, Appl. Opt. 42(25), 5123–5129 (2003)

    Google Scholar 

  • T.J. Gould, J. Bewersdorf: Nanoscopy at low light intensities shows its potential, eLife 1, 942–943 (2012)

    Google Scholar 

  • D. Magde, E. Elson, W.W. Webb: Thermodynamic fluctuations in a reacting system—measurement by fluorescence correlation spectroscopy, Phys. Rev. Lett. 29(11), 705–708 (1972)

    CAS  Google Scholar 

  • M. Ehrenberg, R. Rigler: Fluorescence correlation spectroscopy applied to rotational diffusion of macromolecules, Q. Rev. Biophys. 9(1), 69–81 (1976)

    CAS  Google Scholar 

  • E. Haustein, P. Schwille: Fluorescence correlation spectroscopy: novel variations of an established technique, Annu. Rev. Biophys. Biomol. Struct. 36(1), 151–169 (2007)

    CAS  Google Scholar 

  • M.A. Digman, E. Gratton: Lessons in fluctuation correlation spectroscopy, Annu. Rev. Phys. Chem. 62(1), 645–668 (2011)

    CAS  Google Scholar 

  • C. Eggeling, C. Ringemann, R. Medda, G. Schwarzmann, K. Sandhoff, S. Polyakova, V.N. Belov, B. Hein, C. von Middendorff, A. Schönle, S.W. Hell: Direct observation of the nanoscale dynamics of membrane lipids in a living cell, Nature 457(7233), 1159–1162 (2009)

    CAS  Google Scholar 

  • P.N. Hedde, R.M. Dörlich, R. Blomley, D. Gradl, E. Oppong, A.C.B. Cato, G.U. Nienhaus: Stimulated emission depletion-based raster image correlation spectroscopy reveals biomolecular dynamics in live cells, Nat. Commun. 4, 2093–2104 (2013)

    Google Scholar 

  • L. Scipioni, M. Di Bona, G. Vicidomini, A. Diaspro, L. Lanzanò: Local raster image correlation spectroscopy generates high-resolution intracellular diffusion maps, Commun. Biol. 1(1), 10 (2018)

    Google Scholar 

  • P. Bianchini, F. Cardarelli, M. Di Luca, A. Diaspro, R. Bizzarri: Nanoscale protein diffusion by STED-based pair correlation analysis, PLoS ONE 9(6), e99619 (2014)

    Google Scholar 

  • L. Lanzanò, L. Scipioni, M. Di Bona, P. Bianchini, R. Bizzarri, F. Cardarelli, A. Diaspro, G. Vicidomini: Measurement of nanoscale three-dimensional diffusion in the interior of living cells by STED-FCS, Nat. Commun. 8(1), 65 (2017)

    Google Scholar 

  • M.G. Gustafsson: Extended resolution fluorescence microscopy, Curr. Opin. Struct. Biol. 9(5), 627–634 (1999)

    CAS  Google Scholar 

  • W. Lukosz: Optical systems with resolving powers exceeding the classical limit, JOSA 56(11), 1463–1472 (1966)

    CAS  Google Scholar 

  • M. Saxena, G. Eluru, S.S. Gorthi: Structured illumination microscopy, Adv. Opt. Photonics 7(2), 241–235 (2015)

    Google Scholar 

  • L. Schermelleh, P.M. Carlton, S. Haase, L. Shao, L. Winoto, P. Kner, B. Burke, M.C. Cardoso, D.A. Agard, M.G.L. Gustafsson, H. Leonhardt, J.W. Sedat: Subdiffraction multicolor imaging of the nuclear periphery with 3-D structured illumination microscopy, Science 320(5881), 1332–1336 (2008)

    CAS  Google Scholar 

  • P.A. Benedetti, V. Evangelista, D. Guidarini, S. Vestri: Achieving confocal-point performance in confocal-line microscopy, Bioimaging 2(3), 122–130 (1994)

    Google Scholar 

  • M.D. Egger, M. Hadravský, M. Petráň, R. Galambos: Tandem-scanning reflected-light microscope, JOSA 58(5), 661–664 (1968)

    Google Scholar 

  • R. Heintzmann, T.M. Jovin, C. Cremer: Saturated patterned excitation microscopy–A concept for optical resolution improvement, J. Opt. Soc. Am. A 19(8), 1599–1609 (2002)

    Google Scholar 

  • P.A. Benedetti, R. Heintzmann: High-resolution image reconstruction in fluorescence microscopy with patterned excitation, Appl. Opt. 45(20), 5037–5045 (2006)

    Google Scholar 

  • M.G.L. Gustafsson, L. Shao, D.A. Agard, J.W. Sedat: Fluorescence microscopy without resolution limit, biophotonics/optical interconnects and VLSI photonics/WBM microcavities. In: 2004 Digest of the LEOS Summer Topical Meet (IEEE, Piscataway 2004) pp. 25–26

    Google Scholar 

  • M. Gustafsson: Nonlinear structured-illumination microscopy: Wide-field fluorescence imaging with theoretically unlimited resolution, Proc. Natl. Acad. Sci. U.S.A. 102(37), 13081 (2015)

    Google Scholar 

  • A.G. York, P. Chandris, D.D. Nogare, J. Head, P. Wawrzusin, R.S. Fischer, A. Chitnis, H. Shroff: Instant super-resolution imaging in live cells and embryos via analog image processing, Nat. Meth. 10(11), 1122–1126 (2013)

    CAS  Google Scholar 

  • P.W. Winter, A.G. York, D.D. Nogare, M. Ingaramo, R. Christensen, A. Chitnis, G.H. Patterson, H. Shroff: Two-photon instant structured illumination microscopy improves the depth penetration of super-resolution imaging in thick scattering samples, Optica 1(3), 181–111 (2014)

    Google Scholar 

  • F. Wei, Z. Liu: Plasmonic structured illumination microscopy, Nano Lett. 10(7), 2531–2536 (2010)

    CAS  Google Scholar 

  • P.W. Tillberg, F. Chen, K.D. Piatkevich, Y. Zhao, C.-C.J. Yu, B.P. English, L. Gao, A. Martorell, H.-J. Suk, F. Yoshida, E.M. DeGennaro, D.H. Roossien, G. Gong, U. Seneviratne, S.R. Tannenbaum, R. Desimone, D. Cai, E.S. Boyden: Protein-retention expansion microscopy of cells and tissues labeled using standard fluorescent proteins and antibodies, Nat. Biotechnol. 34(9), 1–9 (2016)

    Google Scholar 

  • F. Chen, P.W. Tillberg, E.S. Boyden: Optical imaging. Expansion microscopy, Science 347(6221), 543–548 (2015)

    CAS  Google Scholar 

  • I. Cainero, M. Oneto, L. Pesce, G. Zanini, L. Lanzanò, A. Diaspro, P. Bianchini: Combining expansion microscopy and STED nanoscopy for the study of cellular organization, Biophys. J. 112(3), 140a (2017)

    Google Scholar 

  • M. Gao, R. Maraspini, O. Beutel, A. Zehtabian, B. Eickholt, A. Honigmann, H. Ewers: Expansion stimulated emission depletion microscopy (ExSTED), ACS Nano 12(8), 4178–4185 (2018)

    CAS  Google Scholar 

  • L. Pesce, M. Cozzolino, L. Lanzanò, A. Diaspro, P. Bianchini: Expansion microscopy: a tool to investigate Hutchinson-Gilford progeria syndrome at molecular level, Biophys. J. 114(1), 536a (2018)

    Google Scholar 

  • C. Smith: Microscopy: Two microscopes are better than one, Nature 492(7428), 293–297 (2012)

    CAS  Google Scholar 

  • B. Harke, J.V. Chacko, H. Haschke, C. Canale, A. Diaspro: A novel nanoscopic tool by combining AFM with STED microscopy, Opt. Nanosc. 1(1), 1–6 (2012)

    Google Scholar 

  • J.V. Chacko, F.C. Zanacchi, A. Diaspro: Probing cytoskeletal structures by coupling optical superresolution and AFM techniques for a correlative approach, Cytoskeleton 70(11), 729–740 (2013)

    CAS  Google Scholar 

  • A. Diaspro, J. Chacko, F.C. Zanacchi, R. Oropesa, S. Dante, C. Canale: Correlative nanoscopy: super resolved fluorescence and atomic force microscopy towards nanoscale manipulation and multimodal investigations, Microsc. Microanal. 21(3), 2351–2352 (2015)

    Google Scholar 

  • Z. Bauman: Liquid Life (Polity, Cambridge 2005)

    Google Scholar 

  • M. Samim, S. Krouglov, V. Barzda: Double stokes Mueller polarimetry of second-harmonic generation in ordered molecular structures, J. Opt. Soc. Am. B 32(3), 451–411 (2015)

    CAS  Google Scholar 

  • N. Mazumder, J. Qiu, F.-J. Kao, A. Diaspro: Mueller matrix signature in advanced fluorescence microscopy imaging, J. Opt. 19(2), 025301 (2017)

    Google Scholar 

  • F. Piccinini, T. Balassa, A. Szkalisity, C. Molnar, L. Paavolainen, K. Kujala, K. Buzas, M. Sarazova, V. Pietiainen, U. Kutay, K. Smith, P. Horvath: Advanced cell classifier: User-friendly machine-learning-based software for discovering phenotypes in high-content imaging data, Cell Syst. 4(6), 651–655.e5 (2017)

    CAS  Google Scholar 

  • S. Colabrese, M. Castello, G. Vicidomini, A. Del Bue: Machine learning approach for single molecule localisation microscopy, Biomed. Opt. Express 9(4), 1680 (2018)

    Google Scholar 

  • W. Ouyang, A. Aristov, M. Lelek, X. Hao, C. Zimmer: Deep learning massively accelerates super-resolution localization microscopy, Nat. Biotechnol. 36(5), 460–468 (2018)

    CAS  Google Scholar 

  • J. Ma, M.K. Yu, S. Fong, K. Ono, E. Sage, B. Demchak, R. Sharan, T. Ideker: Using deep learning to model the hierarchical structure and function of a cell, Nat. Methods 15(4), 290–298 (2018)

    CAS  Google Scholar 

Download references

Acknowledgements

The first Italian TPE architecture realized at LAMBS was supported by INFM grants. LAMBS-MicroScoBio is currently funded by IFOM (Istituto FIRC di Oncologia Molecolare, FIRC Institute of Molecular Oncology, Milano). This chapter is dedicated to the memory of Osamu Nakamura, who passed away January 23, 2005 at Handai Hospital.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alberto Diaspro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Diaspro, A. et al. (2019). Fluorescence Microscopy. In: Hawkes, P.W., Spence, J.C.H. (eds) Springer Handbook of Microscopy. Springer Handbooks. Springer, Cham. https://doi.org/10.1007/978-3-030-00069-1_21

Download citation

Publish with us

Policies and ethics