Skip to main content

Ion Microscopy

  • Chapter
  • First Online:
Springer Handbook of Microscopy

Part of the book series: Springer Handbooks ((SHB))

Abstract

Helium ion microscopy ( ) is a relatively young imaging and nanofabrication technique, which is based on a gas field ion source ( ). It rasters a narrow beam of helium ions across the surface of the specimen, to obtain high-resolution surface-sensitive images. Usually, secondary particles such as electrons are collected for image formation but also photons, backscattered atoms or sputtered sample atoms can be used for image formation. Thanks to the very high brightness of the source, a lateral resolution of \({\mathrm{0.5}}\,{\mathrm{nm}}\) can be achieved. The method is in particular suitable for obtaining high-resolution images of insulating samples (such as ceramic materials and biological samples) as the built-in charge compensation allows us to observe such specimens without any additional conductive coatings. In this chapter, I will introduce the method and briefly sketch the underlying physics. In the remainder of the chapter, a number of imaging modes will be discussed and selected examples will be presented. Finally, an outlook is presented on the ongoing efforts to add analytical capabilities to the method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 279.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 359.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • R.P. Feynman: There's plenty of room at the bottom, Eng. Sci. 23(5), 22–36 (1960)

    Google Scholar 

  • M. Knoll, E. Ruska: Das Elektronenmikroskop, Z. Phys. 78(5/6), 318–339 (1932)

    CAS  Google Scholar 

  • H. Boersch: Über hochauflösende Abbildung mittels Ionenstrahlen. (Ionen-Übermikroskopie.), Naturwissenschaften 30(46/47), 711–712 (1942)

    CAS  Google Scholar 

  • C. Magnan: The proton microscope, Nucleonics 4(4), 52–66 (1949)

    CAS  Google Scholar 

  • P. Chanson, C. Magnan: Sur les premieres images obtenues avec un microscope protonique, C.R. Hebd. Seances Acad. Sci. 233(23), 1436–1438 (1951)

    CAS  Google Scholar 

  • P. Chanson, C. Magnan: Sur le contraste des images en microscopie protonique du a la diffusion elastique et inelastique des protons dans les elements legers, C.R. Hebd. Seances Acad. Sci. 238(17), 1701–1703 (1954)

    CAS  Google Scholar 

  • W.H. Escovitz, T.R. Fox, R. Levi-Setti: Hydrogen ion neutralization: A new contrast mechanism in the scanning transmission ion microscope, Ultramicroscopy 1(3/4), 271–274 (1976)

    CAS  Google Scholar 

  • R. Levi-Setti: Proton scanning microscopy: Feasibility and promise, Scanning Electron Microsc. 7, 125–134 (1974)

    Google Scholar 

  • W.H. Escovitz, T.R. Fox, R. Levi-Setti: Scanning transmission ion microscope with a field ion source, Proc. Natl. Acad. Sci. U.S.A. 72(5), 1826–1828 (1975)

    CAS  Google Scholar 

  • J.H. Orloff, L.W. Swanson: Study of a field-ionization source for microprobe applications, J. Vac. Sci. Technol. 12(6), 1209 (1975)

    CAS  Google Scholar 

  • R.L. Seliger, J.W. Ward, V. Wang, R.L. Kubena: A high-intensity scanning ion probe with submicrometer spot size, Appl. Phys. Lett. 34(5), 310 (1979)

    Google Scholar 

  • J. Morgan, J.A. Notte, R. Hill, B.W. Ward: An introduction to the helium ion microscope, Microsc. Today 14(4), 24–31 (2006)

    CAS  Google Scholar 

  • B.W. Ward, J.A. Notte, N.P. Economou: Helium ion microscope: A new tool for nanoscale microscopy and metrology, J. Vac. Sci. Technol. B 24(6), 2871 (2006)

    CAS  Google Scholar 

  • J.A. Notte, F. Rahman, S.M. McVey, S. Tan, R.H. Livengood: The neon gas field ion source-stability and lifetime, Microsc. Microanal. 16(S2), 28–29 (2010)

    CAS  Google Scholar 

  • R.H. Livengood, S. Tan, R. Hallstein, J.A. Notte, S. McVey, F.H.M. Rahman: The neon gas field ion source—A first characterization of neon nanomachining properties, Nucl. Instrum. Methods Phys. Res. A 645(1), 136–140 (2011)

    CAS  Google Scholar 

  • D.C. Bell: Contrast mechanisms and image formation in helium ion microscopy, Microsc. Microanal. 15(02), 147–153 (2009)

    CAS  Google Scholar 

  • G. Hlawacek, V. Veligura, R. van Gastel, B. Poelsema: Helium ion microscopy, J. Vac. Sci. Technol. B 32(2), 020801 (2014)

    Google Scholar 

  • D.C. Joy: Helium Ion Microscopy, Springer Briefs in Materials (Springer, New York 2013) p. 64

    Google Scholar 

  • G. Hlawacek, A. Gölzhäuser (Eds.): Helium Ion Microscopy, Nano Science and Technology (Springer, Basel 2016) p. 633

    Google Scholar 

  • M. Miller, A. Cerezo, M. Hetherington, G. Smith: Atom Probe Field Ion Microscopy (Oxford Univ. Press, Oxford 2006)

    Google Scholar 

  • J.J. Hren, S. Ranganathan (Eds.): Field-Ion Microscopy (Springer, New York 1968) p. 258

    Google Scholar 

  • E.W. Müller: Das Feldionenmikroskop, Z. Phys. 131(1), 136–142 (1951)

    Google Scholar 

  • J.L. Pitters, R. Urban, C. Vesa, R.A. Wolkow: Tip apex shaping of gas field ion sources, Ultramicroscopy 131, 56–60 (2013)

    CAS  Google Scholar 

  • V.N. Tondare: Quest for high brightness, monochromatic noble gas ion sources, J. Vac. Sci. Technol. A 23(6), 1498 (2005)

    CAS  Google Scholar 

  • J.H. Orloff, L.W. Swanson: Angular intensity of a gas-phase field ionization source, J. Appl. Phys. 50(9), 6026 (1979)

    CAS  Google Scholar 

  • K. Horiuchi, T. Itakura, H. Ishikawa: Emission characteristics and stability of a helium field ion source, J. Vac. Sci. Technol. B 6(3), 937 (1988)

    CAS  Google Scholar 

  • M. Sato: Current–Pressure characteristics of Ar field ion source at high pressures, Jpn. J. Appl. Phys. 31(Part 2, No. 3A), L291–L292 (1992)

    CAS  Google Scholar 

  • K. Horiuchi, T. Itakura, H. Ishikawa: Fine pattern lithography using a helium field ion source, J. Vac. Sci. Technol. B 6(1), 241 (1988)

    CAS  Google Scholar 

  • T. Itakura, K. Horiuchi, S. Yamamoto: Focusing column for helium field ion source, Microelectron. Eng. 3(1–4), 153–160 (1985)

    CAS  Google Scholar 

  • H.-W. Fink: Mono-atomic tips for scanning tunneling microscopy, IBM J. Res. Dev. 30(5), 460–465 (1986)

    CAS  Google Scholar 

  • T.T. Tsong: Atom-Probe Field Ion Microscopy (Cambridge Univ. Press, Cambridge 1990) p. 400

    Google Scholar 

  • R. Börret, K. Jousten, K. Böhringer, S. Kalbitzer: Long time current stability of a gas field ion source with a supertip, J. Phys. D 21(12), 1835–1837 (1988)

    Google Scholar 

  • V.T. Binh, J. Marien: Characterization of microtips for scanning tunneling microscopy, Surf. Sci. 202(1/2), L539–L549 (1988)

    CAS  Google Scholar 

  • V.G. Butenko, Y.A. Vlasov, O.L. Golubev, V.N. Shrednik: Point sources of electrons and ions using microprotrusion on the top of a tip, Surf. Sci. 266(1–3), 165–169 (1992)

    CAS  Google Scholar 

  • A. Szczepkowicz: Oxygen-covered tungsten crystal shape: Time effects, equilibrium, surface energy and the edge-rounding temperature, Surf. Sci. 605(17/18), 1719–1725 (2011)

    CAS  Google Scholar 

  • H. Wengelnik, H. Neddermeyer: Oxygen-induced sharpening process of W(111) tips for scanning tunneling microscope use, J. Vac. Sci. Technol. A 8(1), 438–440 (1990)

    CAS  Google Scholar 

  • C. Vesa, R. Urban, J.L. Pitters, R.A. Wolkow: Robustness of tungsten single atom tips to thermal treatment and air exposure, Appl. Surf. Sci. 300, 16–21 (2014)

    CAS  Google Scholar 

  • C.-C. Chang, H.-S. Kuo, I.-S. Hwang, T.T. Tsong: A fully coherent electron beam from a noble-metal covered W(111) single-atom emitter, Nanotechnology 20(11), 115401 (2009)

    Google Scholar 

  • T.-Y. Fu, L.-C. Cheng, C.-H. Nien, T.T. Tsong: Method of creating a Pd-covered single-atom sharp W pyramidal tip: Mechanism and energetics of its formation, Phys. Rev. B 64(11), 113401 (2001)

    Google Scholar 

  • J.L. Pitters, R. Urban, R.A. Wolkow: Creation and recovery of a W(111) single atom gas field ion source, J. Chem. Phys. 136(15), 154704 (2012)

    Google Scholar 

  • R. Urban, J.L. Pitters, R.A. Wolkow: Gas field ion source current stability for trimer and single atom terminated W(111) tips, Appl. Phys. Lett. 100(26), 263105 (2012)

    Google Scholar 

  • R. Urban, R.A. Wolkow, J.L. Pitters: Single atom gas field ion sources for scanning ion microscopy. In: Helium Ion Microscopy, ed. by G. Hlawacek, A. Gölzhäuser (Springer, Basel 2016) pp. 31–61

    Google Scholar 

  • S. Kalbitzer: Optimised operation of gas field ion source, Appl. Phys. A 79(8), 1901–1905 (2004)

    CAS  Google Scholar 

  • S. Nagai, T. Iwata, R. Okawa, K. Kajiwara, K. Hata: Investigation of stability and charge state of Ne and Ar gas field ion source by time-of-flight mass spectrometry, Jpn. J. Appl. Phys. 53(5), 058004 (2014)

    Google Scholar 

  • E.W. Müller, S.B. McLane, J.A. Panitz: Field adsorption and desorption of helium and neon, Surf. Sci. 17(2), 430–438 (1969)

    Google Scholar 

  • E.W. Müller, S.V. Krishnaswamy, S.B. Mclane: Atom-probe FIM analysis of the interaction of the imaging gas with the surface, Surf. Sci. 23, 112 (1970)

    Google Scholar 

  • H.-S. Kuo, I.S. Hwang, T.-Y. Fu, Y.C. Lin, C.C. Chang, T.T. Tsong: Noble metal/W(111) single-atom tips and their field electron and ion emission characteristics, Jpn. J. Appl. Phys. 45(11), 8972–8983 (2006)

    CAS  Google Scholar 

  • J.A. Notte, J. Huang: The helium ion microscope. In: Helium Ion Microscopy, ed. by G. Hlawacek, A. Gölzhäuser (Springer, Basel 2016) pp. 3–30

    Google Scholar 

  • E.W. Müller, T.T. Tsong: Field Ion Microscopy, Principles and Applications (Elsevier, New York 1969) p. 380

    Google Scholar 

  • E.A. Mason, E.W. McDaniel: Appendix III: Tables of properties useful in the estimation of ionneutral interaction energies. In: Transport Properties of Ions in Gases (Wiley-VCH, Weinheim 2005) pp. 531–539

    Google Scholar 

  • F. Aramaki, T. Kozakai, O. Matsuda, O. Takaoka, Y. Sugiyama, H. Oba, K. Aita, A. Yasaka: Photomask repair technology by using gas field ion source, Proc. SPIE 8441, 84410D (2012)

    Google Scholar 

  • F. Aramaki, T. Ogawa, O. Matsuda, T. Kozakai, Y. Sugiyama: Development of new FIB technology for EUVL mask repair, Proc. SPIE 7969, 79691C (2011)

    Google Scholar 

  • M.E. Schmidt, A. Yasaka, M. Akabori, H. Mizuta: Nitrogen gas field ion source (GFIS) focused ion beam (FIB) secondary electron imaging: A first look, Microsc. Microanal. 23(4), 758–768 (2017)

    CAS  Google Scholar 

  • H.-S. Kuo, I.-S. Hwang, T.-Y. Fu, Y.-H. Lu, C.-Y. Lin, T.T. Tsong: Gas field ion source from an Ir/W\(\langle\)111\(\rangle\) single-atom tip, Appl. Phys. Lett. 92(6), 063106 (2008)

    Google Scholar 

  • H. Shichi, S. Matsubara, T. Hashizume: Characteristics of krypton ion emission from a gas field ionization source with a single atom tip, Jpn. J. Appl. Phys. 56(6S1), 06GC01 (2017)

    Google Scholar 

  • J.E. Barth, P. Kruit: Addition of different contributions to the charged particle probe size, Optik 101, 101–109 (1996)

    Google Scholar 

  • R. Hill, F.H.M. Rahman: Advances in helium ion microscopy, Nucl. Instrum. Methods Phys. Res. A 645(1), 96–101 (2011)

    CAS  Google Scholar 

  • N. Ernst, G. Bozdech, H. Schmidt, W.A. Schmidt, G.L. Larkins: On the full-width-at-half-maximum of field ion energy distributions, Appl. Surf. Sci. 67(1–4), 111–117 (1993)

    CAS  Google Scholar 

  • J.A. Notte, B.W. Ward, N.P. Economou, R. Hill, R. Percival, L. Farkas, S. McVey: An introduction to the helium ion microscope, AIP Conf. Proc. 931, 489–496 (2007)

    CAS  Google Scholar 

  • F.W. Martin: A proposal for improved helium microscopy, Microsc. Microanal. 20(5), 1619–1622 (2014)

    CAS  Google Scholar 

  • F.W. Martin: Particle-beam column corrected for both chromatic and spherical aberration, US Patent 9275817B2 (2013)

    Google Scholar 

  • N. Klingner, R. Heller, G. Hlawacek, J. von Borany, J.A. Notte, J. Huang, S. Facsko: Nanometer scale elemental analysis in the helium ion microscope using time of flight spectrometry, Ultramicroscopy 162, 91–97 (2016)

    CAS  Google Scholar 

  • D.C. Bell, M.C. Lemme, L.A. Stern, C.M. Marcus: Precision material modification and patterning with He ions, J. Vac. Sci. Technol. B 27(6), 2755 (2009)

    CAS  Google Scholar 

  • R. van Gastel, L. Barriss, C.A. Sanford, G. Hlawacek, L. Scipioni, A. Merkle, D. Voci, C. Fenner, H.J.W. Zandvliet, B. Poelsema: Design and performance of a ear ultra high vacuum helium ion Microscope, Microsc. Microanal. 17(S2), 928–929 (2011)

    Google Scholar 

  • V. Veligura, G. Hlawacek, R. van Gastel, H.J.W. Zandvliet, B. Poelsema: Channeling in helium ion microscopy: Mapping of crystal orientation, Beilstein J. Nanotechnol. 3, 501–506 (2012)

    Google Scholar 

  • L. Bischoff, P. Mazarov, L. Bruchhaus, J. Gierak: Liquid metal alloy ion sources—An alternative for focussed ion beam technology, Appl. Phys. Rev. 3(2), 021101 (2016)

    Google Scholar 

  • B. Knuffman, A.V. Steele, J.J. McClelland: Cold atomic beam ion source for focused ion beam applications, J. Appl. Phys. 114(4), 044303 (2013)

    Google Scholar 

  • G. Jacob, K. Groot-Berning, S. Wolf, S. Ulm, L. Couturier, S.T. Dawkins, U.G. Poschinger, F. Schmidt-Kaler, K. Singer: Transmission microscopy with nanometer resolution using a deterministic single ion source, Phys. Rev. Lett. 117(4), 1–6 (2016)

    Google Scholar 

  • D.A. MacLaren, B. Holst, D.J. Riley, W. Allison: Focusing elements and design considerations for a scanning helium microscope (SHeM), Surf. Rev. Lett. 10(02n03), 249–255 (2003)

    CAS  Google Scholar 

  • M. Koch, S. Rehbein, G. Schmahl, T. Reisinger, G. Bracco, W.E. Ernst, B. Holst: Imaging with neutral atoms—A new matter-wave microscope, J. Microsc. 229(1), 1–5 (2008)

    CAS  Google Scholar 

  • M. Barr, A. Fahy, A. Jardine, J. Ellis, D. Ward, D.A. MacLaren, W. Allison, P.C. Dastoor: A design for a pinhole scanning helium microscope, Nucl. Instrum. Methods Phys. Res. B 340, 76–80 (2014)

    CAS  Google Scholar 

  • A. Fahy, M. Barr, J. Martens, P.C. Dastoor: A highly contrasting scanning helium microscope, Rev. Sci. Instrum. 86(2), 023704 (2015)

    CAS  Google Scholar 

  • B. Poelsema, G. Comsa: Scattering of Thermal Energy Atoms, Springer Tracts in Modern Physics, Vol. 115 (Springer, Berlin, Heidelberg 1989)

    Google Scholar 

  • F. Traeger: Helium atom scattering from oxide surfaces, ChemPhysChem 7(5), 1006–1013 (2006)

    CAS  Google Scholar 

  • A.P. Jardine, J. Ellis, W. Allison: Quasi-elastic helium-atom scattering from surfaces: Experiment and interpretation, J. Phys. Condens. Matter 14(24), 315 (2002)

    Google Scholar 

  • M. Barr, A. Fahy, J. Martens, A.P. Jardine, D.J. Ward, J. Ellis, W. Allison, P.C. Dastoor: Unlocking new contrast in a scanning helium microscope, Nat. Commun. 7, 10189 (2016)

    CAS  Google Scholar 

  • J.F. Ziegler, J.P. Biersack, M.D. Ziegler: SRIM, The Stopping and Range of Ions in Matter (SRIM, Chester 2008)

    Google Scholar 

  • H. Demers, N. Poirier-Demers, A.R. Couture, D. Joly, M. Guilmain, N. de Jonge, D. Drouin: Three-dimensional electron microscopy simulation with the CASINO Monte Carlo software, Scanning 33(3), 135–146 (2011)

    CAS  Google Scholar 

  • R. Ramachandra, B.J. Griffin, D.C. Joy: A model of secondary electron imaging in the helium ion scanning microscope, Ultramicroscopy 109(6), 748–757 (2009)

    CAS  Google Scholar 

  • K. Ohya, T. Yamanaka, K. Inai, T. Ishitani: Comparison of secondary electron emission in helium ion microscope with gallium ion and electron microscopes, Nucl. Instrum. Methods Phys. Res. B 267(4), 584–589 (2009)

    CAS  Google Scholar 

  • H.D. Hagstrum: Theory of auger ejection of electrons from metals by ions, Phys. Rev. 96(2), 336–365 (1954)

    CAS  Google Scholar 

  • J. Ferrón, E. Alonso, R.A. Baragiola, A. Oliva-Florio: Dependence of ion-electron emission from clean metals on the incidence angle of the projectile, Phys. Rev. B 24(8), 4412–4419 (1981)

    Google Scholar 

  • H.A. Bethe: Minutes of the Washington, D.C., Meeting May 1–3, 1941, Phys. Rev. 59(11), 913–945 (1941)

    Google Scholar 

  • K. Ohya, K. Inai, A. Nisawa, A. Itoh: Emission statistics of x-ray induced photoelectrons and its comparison with electron- and ion-induced electron emissions, Nucl. Instrum. Methods Phys. Res. B 266(4), 541–548 (2008)

    CAS  Google Scholar 

  • M. Rösler: Theory of ion-induced kinetic electron emission from solids. In: Ionization of Solids by Heavy Particles, ed. by R.A. Baragiora (Plenum, Boston 1993) pp. 27–58

    Google Scholar 

  • H. Kudo: Ion-Induced Electron Emission from Crystalline Solids, Springer Tracts in Modern Physics, Vol. 175 (Springer, Berlin, Heidelberg 2002)

    Google Scholar 

  • Y. Lin, D.C. Joy: A new examination of secondary electron yield data, Surf. Interface Anal. 37(11), 895–900 (2005)

    CAS  Google Scholar 

  • K. Buchholt, P. Eklund, J. Jensen, J. Lu, A.L. Spetz, L. Hultman: Step-flow growth of nanolaminate Ti3SiC2 epitaxial layers on 4H-SiC(0001), Scr. Mater. 64(12), 1141–1144 (2011)

    CAS  Google Scholar 

  • G. Hlawacek, M. Jankowski, H. Wormeester, R. van Gastel, H.J.W. Zandvliet, B. Poelsema: Visualization of steps and surface reconstructions in helium ion microscopy with atomic precision, Ultramicroscopy 162, 17–24 (2015)

    Google Scholar 

  • Y.V. Petrov, O.F. Vyvenko, A.S. Bondarenko: Scanning helium ion microscope: Distribution of secondary electrons and ion channeling, J. Surf. Investig. 4(5), 792–795 (2010)

    Google Scholar 

  • Y. Petrov, O. Vyvenko: Secondary electron emission spectra and energy selective imaging in helium ion microscope, Proc. SPIE 8036, 80360O (2011)

    Google Scholar 

  • P. Riccardi, P. Barone, A. Bonanno, A. Oliva, R.A. Baragiola: Angular studies of potential electron emission in the interaction of slow ions with Al surfaces, Phys. Rev. Lett. 84(2), 378–381 (2000)

    CAS  Google Scholar 

  • G. Hlawacek, I. Ahmad, M.A. Smithers, E.S. Kooij: To see or not to see: Imaging surfactant coated nano-particles using HIM and SEM, Ultramicroscopy 135C, 89–94 (2013)

    Google Scholar 

  • Y.V. Petrov, O.F. Vyvenko: Secondary electron generation in the helium ion microscope: Basics and imaging. In: Helium Ion Microscopy, ed. by G. Hlawacek, A. Gölzhäuser (Springer, Basel 2016) pp. 119–146

    Google Scholar 

  • R. Ramachandra: A Study of Helium Ion Induced Secondary Electron Production, Ph.D. Thesis (Univ. Tennessee, Knoxville 2009)

    Google Scholar 

  • R. Timilsina, P.D. Rack: Monte Carlo simulations of focused ion beam induced processing. In: Helium Ion Microscopy, ed. by G. Hlawacek, A. Gölzhäuser (Springer, Basel 2016) pp. 89–118

    Google Scholar 

  • R. Ramachandra, B.J. Griffin, D.C. Joy: Modeling for metrology with a helium beam, Proc. SPIE 6922, 69221W–69221W–8 (2008)

    Google Scholar 

  • S.A. Boden: Introduction to imaging techniques in the HIM. In: Helium Ion Microscopy, ed. by G. Hlawacek, A. Gölzhäuser (Springer, Basel 2016) pp. 149–172

    Google Scholar 

  • G. Behan, D. Zhou, M. Boese, R.M. Wang, H. Zhang: An investigation of nickel cobalt oxide nanorings using transmission electron, scanning electron and helium ion microscopy, J. Nanosci. Nanotechnol. 12(2), 1094–1098 (2012)

    CAS  Google Scholar 

  • D.S. Fox, Y. Zhou, A. O'Neill, S. Kumar, J.J. Wang, J.N. Coleman, G.S. Duesberg, J.F. Donegan, H. Zhang, A. O'Neill: Helium ion microscopy of graphene: Beam damage, image quality and edge contrast, Nanotechnology 24(33), 335702 (2013)

    CAS  Google Scholar 

  • A. Gölzhäuser: Helium ion microscopy of carbon nanomembranes. In: Helium Ion Microscopy, ed. by G. Hlawacek, A. Gölzhäuser (Springer, Basel 2016) pp. 225–244

    Google Scholar 

  • A. Beyer, H. Vieker, R. Klett, H.M. zu Theenhausen, P. Angelova, A. Gölzhäuser: Imaging of carbon nanomembranes with helium ion microscopy, Beilstein J. Nanotechnol. 6(1), 1712–1720 (2015)

    CAS  Google Scholar 

  • G. Behan, J.F. Feng, H. Zhang, P.N. Nirmalraj, J.J. Boland: Effect of sample bias on backscattered ion spectroscopy in the helium ion microscope, J. Vac. Sci. Technol. A 28(6), 1377 (2010)

    CAS  Google Scholar 

  • D.-E. Arafah, J. Meyer, H. Sharabati, A. Mahmoud: Charge-state measurements of backscattered ions from Au films, Phys. Rev. A 39(8), 3836–3841 (1989)

    CAS  Google Scholar 

  • T.M. Buck, G.H. Wheatley, L.C. Feldman: Charge states of 25–150 keV H and 4He backscattered from solid surfaces, Surf. Sci. 35, 345–361 (1973)

    CAS  Google Scholar 

  • W. Eckstein, M. Mayer: Rutherford backscattering from layered structures beyond the single scattering model, Nucl. Instrum. Methods Phys. Res. B 153(1–4), 337–344 (1999)

    CAS  Google Scholar 

  • P. Bauer, E. Steinbauer, J.P. Biersack: Rutherford backscattering beyond the single scattering model, Nucl. Instrum. Methods Phys. Res. B 79(1–4), 443–445 (1993)

    Google Scholar 

  • E. Steinbauer, P. Bauer, J. Biersack: Monte Carlo simulation of RBS spectra: Comparison to experimental and empirical results, Nucl. Instrum. Methods Phys. Res. B 45(1–4), 171–175 (1990)

    Google Scholar 

  • A. Weber, H. Mommsen: Background in Rutherford backscattering spectra: A simple formula, Nucl. Instrum. Methods Phys. Res. 204, 559–563 (1983)

    CAS  Google Scholar 

  • A. Weber, H. Mommsen, W. Sarter, A. Weller: Double scattering in Rutherford backscattering spectra, Nucl. Instrum. Methods Phys. Res. 198, 527–533 (1982)

    CAS  Google Scholar 

  • N. Klingner: Ionenstrahlanalytik im Helium-Ionen-Mikroskop, Ph.D. Thesis (TU Dresden, Dresden 2016)

    Google Scholar 

  • S. Sijbrandij, J.A. Notte, L. Scipioni, C. Huynh, C.A. Sanford: Analysis and metrology with a focused helium ion beam, J. Vac. Sci. Technol. B 28(1), 73 (2010)

    CAS  Google Scholar 

  • R. van Gastel, G. Hlawacek, H.J.W. Zandvliet, B. Poelsema: Subsurface analysis of semiconductor structures with helium ion microscopy, Microelectron. Reliab. 52(9/10), 2104–2109 (2012)

    Google Scholar 

  • R. Heller, N. Klingner, G. Hlawacek: Backscattering spectrometry in the helium ion microscope: Imaging elemental compositions on the nm scale. In: Helium Ion Microscopy, ed. by G. Hlawacek, A. Gölzhäuser (Springer, Basel 2016) pp. 265–295

    Google Scholar 

  • C. Kerkdijk, E.W. Thomas: Light emission induced by H+ and He+ impact on a clean copper surface, Physica 63(3), 577–598 (1973)

    CAS  Google Scholar 

  • W. Baird, M. Zivitz, E. Thomas: Excited–state formation as H+ and He+ ions scatter from metal surfaces, Phys. Rev. A 12(3), 876–884 (1975)

    CAS  Google Scholar 

  • W.F. van der Weg, P.K. Rol: On the excited state of sputtered particles, Nucl. Instrum. Methods Phys. Res. 38, 274–276 (1965)

    Google Scholar 

  • C.W.W. White: Ion induced optical emission for surface and depth profile analysis, Nucl. Instrum. Methods Phys. Res. 149(1–3), 497–506 (1978)

    CAS  Google Scholar 

  • N.H. Tolk, I.S.T. Tsong, C.W. White: In situ spectrochemical analysis of solid surfaces by ion beam sputtering, Anal. Chem. 49(1), 16A–30A (1977)

    CAS  Google Scholar 

  • D. Ghose, R. Hippier: Ionoluminescence. In: Luminescence of Solids, ed. by D.R. Vij (Springer, New York 1998) pp. 189–220

    Google Scholar 

  • U. Scherz: Grundlagen der Festkörperphysik. In: Lehrbuch der Experimentalphysik, 2nd edn., ed. by R. Kassing (De Gruyter, Berlin 1992)

    Google Scholar 

  • G.M. Filippelli, M.L. Delaney: The effects of manganese(II) and iron(II) on the cathodoluminescence signal in synthetic apatite, SEPM J. Sediment. Res. 63, 167–173 (1993)

    CAS  Google Scholar 

  • K. Schwartz: Excitons and radiation damage in alkali halides. In: Atomic Physics Methods in Modern Research, Lecture Notes in Physics, Vol. 1, ed. by K.P. Jungmann, J. Kowalski, I. Reinhard, F. Träer (Springer, Berlin, Heidelberg 1997) pp. 351–366

    Google Scholar 

  • V. Veligura, G. Hlawacek, U. Jahn, R. van Gastel, H.J.W. Zandvliet, B. Poelsema: Creation and physical aspects of luminescent patterns using helium ion microscopy, J. Appl. Phys. 115(18), 183502 (2014)

    Google Scholar 

  • S.A. Boden, T.M.W. Franklin, L. Scipioni, D.M. Bagnall, H.N. Rutt: Ionoluminescence in the helium ion microscope, Microsc. Microanal. 18(6), 1253–1262 (2012)

    CAS  Google Scholar 

  • V. Veligura, G. Hlawacek, R. van Gastel, H.J.W. Zandvliet, B. Poelsema: Investigation of ionoluminescence of semiconductor materials using helium ion microscopy, J. Lumin. 157, 321–326 (2015)

    CAS  Google Scholar 

  • V. Veligura, G. Hlawacek, R. van Gastel, H.J.W. Zandvliet, B. Poelsema: A high resolution ionoluminescence study of defect creation and interaction, J. Phys. Condens. Matter 26(16), 165401 (2014)

    CAS  Google Scholar 

  • J.I. Goldstein, D.E. Newbury, D.C. Joy, C.E. Lyman, P. Echlin, E. Lifshin, L. Sawyer, J.R. Michael: Scanning Electron Microscopy and X-Ray Microanalysis, 3rd edn. (Springer, Berlin 2003)

    Google Scholar 

  • A.J. Pearson, S.A. Boden, D.M. Bagnall, D.G. Lidzey, C. Rodenburg: Imaging the bulk nanoscale morphology of organic solar cell blends using helium ion microscopy, Nano Lett. 11(10), 4275–4281 (2011)

    CAS  Google Scholar 

  • Z.-Y. Tian, P. Mountapmbeme, P.M. Kouotou, A. El Kasmi, P.H. Tchoua Ngamou, K. Kohse-Höinghaus, H. Vieker, A. Beyer, A. Gölzhäuser: Low-temperature deep oxidation of olefins and DME over cobalt fernite, Proc. Combust. Inst. 35, 2207 (2015)

    CAS  Google Scholar 

  • P.M. Kouotou, H. Vieker, Z.-Y. Tian, P.T. Ngamou, A.E. Kasmi, A. Beyer, A. Gölzhäuser, K. Kohse-Höinghaus: Structure-activity relation of spinal-type Co-Fe oxides for low-temperature CO oxidation, Catal. Sci. Technol. 4, 3359 (2014)

    Google Scholar 

  • P.M. Kouotou, Z.-Y. Tian, H. Vieker, A. Beyer, A. Gölzhäuser, K. Kohse-Höinghaus: Selective synthesis of \(\alpha\)-Fe2O3 thin films and effect of the deposition temperature and lattice oxygen on the catalytic combustion of propene, J. Mater. Chem. A 1, 10495 (2013)

    CAS  Google Scholar 

  • H. Vieker, A. Beyer: HIM applications in combustion science: Imaging of catalyst surfaces and nascent soot. In: Helium Ion Microscopy, ed. by G. Hlawacek, A. Gölzhäuser (Springer, Basel 2016) pp. 187–203

    Google Scholar 

  • S.A. Boden, A. Asadollahbaik, H.N. Rutt, D.M. Bagnall: Helium ion microscopy of Lepidoptera scales, Scanning 34(2), 107–120 (2012)

    Google Scholar 

  • H. Guo, H. Itoh, C. Wang, H. Zhang, D. Fujita: Focal depth measurement of scanning helium ion microscope, Appl. Phys. Lett. 023105(2014), 1–5 (2014)

    Google Scholar 

  • M.S. Joens, C. Huynh, J.M. Kasuboski, D.C. Ferranti, Y.J. Sigal, F. Zeitvogel, M. Obst, C.J. Burkhardt, K.P. Curran, S.H. Chalasani, L.A. Stern, B. Goetze, J.A.J. Fitzpatrick: Helium ion microscopy (HIM) for the imaging of biological samples at sub-nanometer resolution, Sci. Rep. 3, 3514 (2013)

    Google Scholar 

  • Y. Zhou, D.S. Fox, H. Zhang: Helium ion microscopy for two-dimensional materials. In: Helium Ion Microscopy, ed. by G. Hlawacek, A. Gölzhäuser (Springer, Basel 2016) pp. 245–262

    Google Scholar 

  • H. Guo, J. Gao, N. Ishida, M. Xu, D. Fujita: Characterization of two-dimensional hexagonal boron nitride using scanning electron and scanning helium ion microscopy, Appl. Phys. Lett. 104(3), 031607 (2014)

    Google Scholar 

  • G. Nanda, S. Goswami, K. Watanabe, T. Taniguchi, P.F.A. Alkemade: Defect control and n-doping of encapsulated graphene by helium-ion-beam irradiation, Nano Lett. 15(6), 4006–4012 (2015)

    CAS  Google Scholar 

  • R. Zan, Q.M. Ramasse, R. Jalil, T. Georgiou, U. Bangert, K.S. Novoselov: Control of radiation damage in MoS 2 by graphene encapsulation, ACS Nano 7(11), 10167–10174 (2013)

    CAS  Google Scholar 

  • G. Algara-Siller, S. Kurasch, M. Sedighi, O. Lehtinen, U. Kaiser: The pristine atomic structure of MoS 2 monolayer protected from electron radiation damage by graphene, Appl. Phys. Lett. 103(20), 203107 (2013)

    Google Scholar 

  • M. Kalbac, O. Lehtinen, A.V. Krasheninnikov, J. Keinonen: Ion-irradiation-induced defects in isotopically-labeled two layered graphene: Enhanced in-situ annealing of the damage, Adv. Mater. 25(7), 1004–1009 (2013)

    CAS  Google Scholar 

  • L. Scipioni, C.A. Sanford, J.A. Notte, B. Thompson, S. McVey: Understanding imaging modes in the helium ion microscope, J. Vac. Sci. Technol. B 27(6), 3250 (2009)

    CAS  Google Scholar 

  • L. Scipioni, D.C. Ferranti, V.S. Smentkowski, R.A. Potyrailo: Fabrication and initial characterization of ultrahigh aspect ratio vias in gold using the helium ion microscope, J. Vac. Sci. Technol. B 28(6), C6P18 (2010)

    CAS  Google Scholar 

  • J. Yang, D.C. Ferranti, L.A. Stern, C.A. Sanford, J. Huang, Z. Ren, L.-C. Qin, A.R. Hall: Rapid and precise scanning helium ion microscope milling of solid-state nanopores for biomolecule detection, Nanotechnology 22(28), 285310 (2011)

    Google Scholar 

  • A.R. Hall: Solid-state nanopores: From fabrication to application, Microsc. Today 20(05), 24–29 (2012)

    CAS  Google Scholar 

  • O.K. Zahid, A.R. Hall: Helium ion microscope fabrication of solid-state nanopore devices for biomolecule analysis. In: Helium Ion Microscopy, ed. by G. Hlawacek, A. Gölzhäuser (Springer, Basel 2016) pp. 447–470

    Google Scholar 

  • T.J. Woehl, R.M. White, R.R. Keller: Dark-field scanning transmission ion microscopy via detection of forward-scattered helium ions with a microchannel plate, Microsc. Microanal. 22(3), 544–550 (2016)

    CAS  Google Scholar 

  • J.A. Notte, R. Hill, S.M. McVey, R. Ramachandra, B.J. Griffin, D.C. Joy: Diffraction imaging in a He+ on beam scanning transmission microscope, Microsc. Microanal. 16(05), 599–603 (2010)

    Google Scholar 

  • J. Wang, S.H.Y. Huang, C. Herrmann, S.A. Scott, F. Schiettekatte, K.L. Kavanagh: Focussed helium ion channeling through Si nanomembranes, J. Vac. Sci. Technol. B 36(2), 021203 (2018)

    Google Scholar 

  • Y.V. Petrov, O.F. Vyvenko: Scanning reflection ion microscopy in a helium ion microscope, Beilstein J. Nanotechnol. 6, 1125–1137 (2015)

    CAS  Google Scholar 

  • T. Wirtz, D. Dowsett, P. Philipp: SIMS on the helium ion microscope: A powerful tool for high-resolution high-sensitivity nano-analytics. In: Helium Ion Microscopy, ed. by G. Hlawacek, A. Gölzhäuser (Springer, Basel 2016) pp. 297–323

    Google Scholar 

  • S. Sijbrandij, J.A. Notte, B. Thompson, C. Huynh, C.A. Sanford, L. Scipioni: A new detector for backscattered helium ions in the 30 keV energy range, Microsc. Microanal. 15(S2), 220–221 (2009)

    Google Scholar 

  • S. Sijbrandij, B. Thompson, J.A. Notte, B.W. Ward, N.P. Economou: Elemental analysis with the helium ion microscope, J. Vac. Sci. Technol. B 26(6), 2103 (2008)

    CAS  Google Scholar 

  • R. van Gastel, G. Hlawacek, S. Dutta, B. Poelsema: Backscattered helium spectroscopy in the helium ion microscope: Principles, resolution and applications, Nucl. Instrum. Methods Phys. Res. B 344, 44–49 (2015)

    Google Scholar 

  • M. Mayer: SIMNRA, a simulation program for the analysis of NRA, RBS and ERDA, AIP Conf. Proc. 475, 541–544 (1999)

    CAS  Google Scholar 

  • N.P. Barradas, C. Jeynes, R.P. Webb: Simulated annealing analysis of Rutherford backscattering data, Appl. Phys. Lett. 71(2), 291–293 (1997)

    CAS  Google Scholar 

  • P. Sigmund: Theory of sputtering. I. Sputtering yield of amorphous and polycrystalline targets, Phys. Rev. 184(2), 383–416 (1969)

    CAS  Google Scholar 

  • N. Matsunami, Y. Yamamura, Y. Itikawa, N. Itoh, Y. Kazumata, S. Miyagawa, K. Morita, R. Shimizu, H. Tawara: Energy dependence of the ion-induced sputtering yields of monatomic solids, At. Data Nucl. Data Tables 31(1), 1–80 (1984)

    CAS  Google Scholar 

  • Y. Yamamura, H. Tawara: Energy dependence of ion-induced sputtering yields from monatomic solids at normal incidence, At. Data Nucl. Data Tables 62(2), 149–253 (1996)

    CAS  Google Scholar 

  • L. Pillatsch, N. Vanhove, D. Dowsett, S. Sijbrandij, J.A. Notte, T. Wirtz: Study and optimisation of SIMS performed with He+ and Ne+ bombardment, Appl. Surf. Sci. 282, 908–913 (2013)

    CAS  Google Scholar 

  • D. Dowsett, T. Wirtz, N. Vanhove, L. Pillatsch, S. Sijbrandij, J.A. Notte: Secondary ion mass spectrometry on the helium ion microscope: A feasibility study of ion extraction, J. Vac. Sci. Technol. B 30(6), 06F602 (2012)

    Google Scholar 

  • T. Wirtz, P. Philipp, J.-N. Audinot, D. Dowsett, S. Eswara: High-resolution high-sensitivity elemental imaging by secondary ion mass spectrometry: from traditional 2-D and 3-D imaging to correlative microscopy, Nanotechnology 26(43), 434001 (2015)

    CAS  Google Scholar 

  • V. Veligura, G. Hlawacek, R.P. Berkelaar, R. van Gastel, H.J.W. Zandvliet, B. Poelsema: Digging gold: keV He+ ion interaction with Au, Beilstein J. Nanotechnol. 4, 453–460 (2013)

    Google Scholar 

  • S. Ogawa, T. Iijima, S. Awata, R. Sugie, N. Kawasaki, Y. Otsuka: Characterization of damage in SiO2 during helium ion microscope observation by luminescence and TEM-EELS, Microsc. Microanal. 18(S2), 814–815 (2012)

    Google Scholar 

  • V. Veligura, G. Hlawacek: Ionoluminescence. In: Helium Ion Microscopy, ed. by G. Hlawacek, A. Gölzhäuser (Springer, Basel 2016) pp. 325–351

    Google Scholar 

  • V. Veligura: Material Characterization and Modification Using Helium Ion Microscopy: Various Examples, Ph.D. Thesis (Univ. Twente, Enschede 2014)

    Google Scholar 

  • T.M.W. Franklin: Scanning Ionoluminescence Microscopy with a Helium Ion Microscope, Ph.D. Thesis (Univ. Southampton, Southampton 2012), p. 198

    Google Scholar 

  • I. Stensgaard: Surface studies with high-energy ion beams, Rep. Prog. Phys. 55(7), 989–1033 (1992)

    CAS  Google Scholar 

  • L.C. Feldman, J.W. Mayer, S.T.A. Picraux: Materials Analysis by Ion Channeling: Submicron Crystallography (Academic Press, New York 1982) p. 300

    Google Scholar 

  • J. Lindhard: Influence of crystal lattice on motion of energetic charged particles, Mat. Fys. Medd. Dan. Vidensk. Selsk. 34(14), 1–64 (1965)

    Google Scholar 

  • A.A. van Gorkum: Channeling computations for low energy (25–2500 eV) helium in tungsten, Phys. Lett. A 75(1/2), 134–136 (1979)

    Google Scholar 

  • M. Nastasi, J. Mayer, Y. Wang: Ion Beam Analysis (CRC, Boca Raton 2014) p. 472

    Google Scholar 

  • G.D. Magnuson, C.E. Carlston: Electron ejection from metals due to 1- to 10-keV noble gas ion bombardment. I. Polycrystalline Materials, Phys. Rev. 129(6), 2403–2408 (1963)

    CAS  Google Scholar 

  • M.T. Robinson: Theoretical aspects of monocrystal sputtering. In: Sputtering by Particle Bombardment, ed. by R. Behrisch (Springer, Berlin 1981) pp. 73–144

    Google Scholar 

  • U. Von Gemmingen: Ion induced secondary electron emission from single crystal surfaces, Surf. Sci. 120(2), 334–345 (1982)

    Google Scholar 

  • G. Hlawacek, V. Veligura, R. van Gastei, B. Poelsema: Channeling and backscatter imaging. In: Helium Ion Microscopy, ed. by G. Hlawacek, A. Gölzhäuser (Springer, Basel 2016) pp. 205–224

    Google Scholar 

  • M.A. Karolewski, R.G. Cavell: Modelling the directional and energy dependence of 5-10 keV Ar+ ion-induced secondary electron yields from Cu crystals, Surf. Sci. 605(19/20), 1842–1851 (2011)

    CAS  Google Scholar 

  • M. Nègre, J. Mischler, N. Bénazeth, C. Noguera, D. Spanjaard: Diffraction effects in the angular distribution of secondary electrons emitted under ionic bombardment of a (111) surface of silver: Experimental results and theoretical model, Surf. Sci. 78(1), 174–180 (1978)

    Google Scholar 

  • C. Langlois, T. Douillard, H. Yuan, N.P. Blanchard, A. Descamps-Mandine, B. Van de Moortèle, C. Rigotti, T. Epicier: Crystal orientation mapping via ion channeling: An alternative to EBSD, Ultramicroscopy 157, 65–72 (2015)

    CAS  Google Scholar 

  • M. Jankowski, H. Wormeester, H.J.W. Zandvliet, B. Poelsema: Temperature-dependent formation and evolution of the interfacial dislocation network of Ag/Pt(111), Phys. Rev. B 89(23), 235402 (2014)

    Google Scholar 

  • G. Hlawacek, V. Veligura, S. Lorbek, T.F. Mocking, A. George, R. van Gastel, H.J.W. Zandvliet, B. Poelsema: Imaging ultra thin layers with helium ion microscopy: Utilizing the channeling contrast mechanism, Beilstein J. Nanotechnol. 3, 507–512 (2012)

    Google Scholar 

  • M.G. Stanford, B.B. Lewis, K. Mahady, J.D. Fowlkes, P.D. Rack: Review article: Advanced nanoscale patterning and material synthesis with gas field helium and neon ion beams, J. Vac. Sci. Technol. B 35(3), 030802 (2017)

    Google Scholar 

Download references

Acknowledgements

This work is based on the input and hard work of many other people, in particular Vasilisa Veligura (University of Twente, Enschede, The Netherlands) and Nico Klingner (Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany) who worked on IL and TOF, respectively; but also Raoul van Gastel and Bene Poelsema—from the University of Twente in Enschede, the Netherlands—who brought me into the field of HIM. Further, I want acknowledge help from my colleagues Rene Heller, Lothar Bischoff and Stefan Facsko.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gregor Hlawacek .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hlawacek, G. (2019). Ion Microscopy. In: Hawkes, P.W., Spence, J.C.H. (eds) Springer Handbook of Microscopy. Springer Handbooks. Springer, Cham. https://doi.org/10.1007/978-3-030-00069-1_14

Download citation

Publish with us

Policies and ethics