Skip to main content

Aberration Correctors, Monochromators, Spectrometers

  • Chapter
  • First Online:
Springer Handbook of Microscopy

Abstract

After four decades of attempts to correct the primary spherical and chromatic aberrations of electron lenses that led to no improvement in resolution, success was at last achieved in the 1990s with both quadrupole-octupole and sextupole correctors. The successful correctors focused on three aspects of aberration correction: primary aberrations, parasitic aberrations , and overall stability. They quickly demonstrated resolution improvement in the microscopes they were built into, and in the early 2000s, they advanced the attainable resolution to \(<{\mathrm{1}}\,{\mathrm{\AA{}}}\)—a level not achievable by uncorrected electron microscopes. Subsequent generations of correctors included further multipoles and corrected aberrations up to the fifth order, enabling resolution of better than \({\mathrm{0.5}}\,{\mathrm{\AA{}}}\) to be reached at \({\mathrm{300}}\,{\mathrm{kV}}\) primary voltage, and around \({\mathrm{1}}\,{\mathrm{\AA{}}}\) at \({\mathrm{30}}\,{\mathrm{kV}}\). The effect of chromatic aberration was reduced by the use of hybrid quadrupoles or by incorporating a monochromator in the microscope column.

After a brief summary of the optics of multipoles, the various types of correctors are examined in detail: quadrupole–octopole correctors , which first improved the performance of a scanning electron microscope and, soon after, that of scanning transmission electron microscopes; and sextupole correctors , which first increased the resolving power of conventional (fixed-beam) transmission electron microscopes, and were later used in scanning transmission electron microscopes as well. Ways of combating chromatic aberration are then described, including mirror correctors employed in low-energy-electron and photoemission microscopes ( and PEEM ). A section is devoted to studies of aberrations beyond the third order and of parasitic aberrations.

Electron spectrometers and imaging filters are routine accessories of electron microscopes, and they too must be carefully designed, especially when attached to aberration-corrected instruments. A section covers these devices, and much of the reasoning also applies to monochromators. Separate paragraphs are devoted to post-column and in-column spectrometers and monochromators, and the attainable energy resolution is discussed. Practical aspects of the correction process are described, notably autotuning and aberration measurement. We conclude with a survey of current performance limits and comments on the problems to be overcome if further progress is to be made.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 279.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 359.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • O. Scherzer: Über einige Fehler von Elektronenlinsen, Z. Phys. 101, 593–603 (1936)

    Google Scholar 

  • O. Scherzer: Sphärische und chromatische Korrektur von Elektronenlinsen, Optik 2, 114–132 (1947)

    CAS  Google Scholar 

  • A. Septier: The struggle to overcome spherical aberration in electron optics, Adv. Opt. Electron Microsc. 1, 204–274 (1966)

    Google Scholar 

  • A. Septier: The struggle to overcome spherical aberration in electron optics, Adv. Imaging Electron Phys. 202, 75–147 (2017)

    Google Scholar 

  • P.W. Hawkes: Methods of computing optical properties and combating aberrations for low-intensity beams, Adv. Electron. Electron Phys. Suppl. 13A, 45–157 (1980)

    Google Scholar 

  • P.W. Hawkes, E. Kasper: Principles of Electron Optics, 2nd edn. (Academic Press, Kidlington 2018)

    Google Scholar 

  • M. Marko, H. Rose: The contributions of Otto Scherzer (1909–1982) to the development of the electron microscope, Microsc. Microanal. 16, 366–374 (2010)

    CAS  Google Scholar 

  • J. Orloff (Ed.): Handbook of Charged Particle Optics, 2nd edn. (CRC, Boca Raton 2009)

    Google Scholar 

  • E. Munro: Computational techniques for design of charged particle optical systems. In: Handbook of Charged Particle Optics, ed. by J. Orloff (CRC, Boca Raton 1997) pp. 1–76

    Google Scholar 

  • K. Tsuno: Magnetic lenses for electron microscopy. In: Handbook of Charged Particle Optics, 2nd edn., ed. by J. Orloff (CRC, Boca Raton 2009) pp. 129–159

    Google Scholar 

  • B. Lencová: Electrostatic lenses. In: Handbook of Charged Particle Optics, 2nd edn., ed. by J. Orloff (CRC, Boca Raton 2009) pp. 161–208

    Google Scholar 

  • P.W. Hawkes: Aberrations. In: Handbook of Charged Particle Optics, 2nd edn., ed. by J. Orloff (CRC, Boca Raton 2009) pp. 209–340

    Google Scholar 

  • H. Rose: Geometrical Charged-Particle Optics, 2nd edn. (Springer, Heidelberg 2012)

    Google Scholar 

  • H. Rose: Advances in electron optics. In: High-Resolution Imaging and Spectrometry of Materials, ed. by F. Ernst, M. Rühle (Springer, Berlin 2003) pp. 189–270

    Google Scholar 

  • P.W. Hawkes: Quadrupoles in Electron Lens Design, Adv. Electron. Electron Phys. Suppl. 7 (Academic Press, Cambridge 1970)

    Google Scholar 

  • L.A. Baranova, S.Ya. Yavor: The optics of round and multipole electrostatic lenses, Adv. Electron. Electron Phys. 76, 1–207 (1989)

    Google Scholar 

  • A.D. Dymnikov, S.Ya. Yavor: Four quadrupole lenses as an analogue of an axially symmetric system, Zh. Tekh. Fiz. 33, 851–858 (1963)

    Google Scholar 

  • A.D. Dymnikov, S.Ya. Yavor: Four quadrupole lenses as an analogue of an axially symmetric system, Sov. Phys. Tech. Phys. 8, 639–643 (1963)

    Google Scholar 

  • H. Rose: Theory of electron-optical achromats and apochromats, Ultramicroscopy 93, 293–303 (2002)

    CAS  Google Scholar 

  • S. Uhlemann, M. Haider: Residual wave aberrations in the first spherical aberration corrected transmission electron microscope, Ultramicroscopy 72, 109–119 (1998)

    CAS  Google Scholar 

  • M. Haider, H. Müller, S. Uhlemann, J. Zach, U. Loebau, R. Hoeschen: Prerequisites for a Cc/Cs-corrected ultrahigh-resolution TEM, Ultramicroscopy 108, 167–178 (2008)

    CAS  Google Scholar 

  • M. Haider, P. Hartel, U. Loebau, R. Hoeschen, H. Müller, S. Uhlemann, F. Kahl, F. Zach: Progress on the development of a Cc/Cs corrector for TEAM, Microsc. Microanal. 14(Suppl. 2), 800–801 (2008)

    Google Scholar 

  • M. Haider, H. Müller, S. Uhlemann: Present and future hexapole aberration correctors for high resolution electron microscopy, Adv. Imaging Electron Phys. 153, 43–120 (2008)

    CAS  Google Scholar 

  • M. Haider, S. Uhlemann, J. Zach: Upper limits for the residual aberrations of a high-resolution aberration-corrected STEM, Ultramicroscopy 81, 163–175 (2000)

    CAS  Google Scholar 

  • O.L. Krivanek, N. Dellby, M.F. Murfitt: Aberration correction in electron microscopy. In: Handbook of Charged Particle Optics, 2nd edn., ed. by J. Orloff (CRC, Boca Raton 2009) pp. 601–640

    Google Scholar 

  • O.L. Krivanek, N. Dellby, A.R. Lupini: Towards sub-Å electron beams, Ultramicroscopy 78, 1–11 (1999)

    CAS  Google Scholar 

  • H. Sawada: Aberration correction in STEM. In: Scanning Transmission Electron Microscopy of Nanomaterials, ed. by N. Tanaka (Imperial College Press, London 2015) pp. 283–305

    Google Scholar 

  • H. Sawada, T. Sannomiya, F. Hosokawa, T. Nakamichi, T. Kaneyama, T. Tomita, Y. Kondo, T. Tanaka, Y. Oshima, Y. Tanishiro, K. Takayanagi: Measurement method of aberration from Ronchigram by autocorrelation function, Ultramicroscopy 108, 1467–1475 (2008)

    CAS  Google Scholar 

  • H. Sawada, M. Watanabe, E. Okunishi, Y. Kondo: Auto-tuning of aberrations using high-resolution STEM images by auto-correlation function, Microsc. Microanal. 17(Suppl. 2), 1308–1309 (2011)

    Google Scholar 

  • H. Sawada, F. Hosokawa, T. Sasaki, T. Kaneyama, Y. Kondo, K. Suenaga: Aberration correctors developed under the Triple C project, Adv. Imaging Electron Phys. 168, 297–336 (2011)

    Google Scholar 

  • O.L. Krivanek: Three-fold astigmatism in high-resolution transmission electron microscopy, Ultramicroscopy 55, 419–433 (1994)

    CAS  Google Scholar 

  • O.L. Krivanek, G.Y. Fan: Complete HREM autotuning using automated diffractogram analysis, Proc. Annu. Meet. EMSA 50(1), 96–97 (1992)

    Google Scholar 

  • O.L. Krivanek, G.Y. Fan: Application of slow-scan charge-coupled device (CCD) cameras to on-line microscope control, Scanning Microsc. Suppl. 6, 105–114 (1992)

    Google Scholar 

  • O.L. Krivanek, M.L. Leber: Three-fold astigmatism: An important TEM aberration. In: Proc. 51st Annu. Meet. Microsc. Soc. Am, ed. by G.W. Bailey, C.L. Rieder (San Francisco Press, San Francisco 1993) pp. 972–973

    Google Scholar 

  • O.L. Krivanek, M.L. Leber: Autotuning for 1 Å resolution. In: Proc. 13th Int. Conf. Electron Microsc., Paris, Vol. 1, ed. by B. Jouffrey, C. Colliex, J.-P. Chevalier, F. Glas, P.W. Hawkes, D. Hernandez-Verdun, J. Schrevel, D. Thomas (Editions de Physique, Les Ulis 1994) pp. 157–158

    Google Scholar 

  • O.L. Krivanek, P.A. Stadelmann: Effect of three-fold astigmatism on high-resolution electron micrographs, Ultramicroscopy 60, 103–113 (1995)

    CAS  Google Scholar 

  • W.O. Saxton: Observation of lens aberrations for very high resolution electron microscopy I: Theory, J. Microsc. (Oxford) 179, 201–213 (1995)

    Google Scholar 

  • W.O. Saxton: Simple prescriptions for measuring three-fold astigmatism, Ultramicroscopy 58, 239–243 (1995)

    CAS  Google Scholar 

  • W.O. Saxton: A new way of measuring aberrations, Ultramicroscopy 81, 41–45 (2000)

    CAS  Google Scholar 

  • W.O. Saxton: Observation of lens aberrations for very high resolution electron microscopy. II. Simple expressions for optimal estimates, Ultramicroscopy 151, 168–177 (2015)

    CAS  Google Scholar 

  • W.O. Saxton, G. Chand, A.I. Kirkland: Accurate determination and compensation of lens aberrations in high resolution EM. In: Proc. 13th Int. Conf. Electron Microsc., Paris, Vol. 1, ed. by B. Jouffrey, C. Colliex, J.-P. Chevalier, F. Glas, P.W. Hawkes, D. Hernandez-Verdun, J. Schrevel, D. Thomas (Editions de Physique, Les Ulis 1994) pp. 203–204

    Google Scholar 

  • G. Chand, W.O. Saxton, A.I. Kirkland: Aberration measurement and automated alignment of the TEM. In: Electron Microscopy and Analysis, ed. by D. Cherns (Institute of Physics, Bristol 1995) pp. 297–300

    Google Scholar 

  • K. Ishizuka: Coma-free alignment of a high-resolution electron microscope with three-fold astigmatism, Ultramicroscopy 55, 407–418 (1994)

    CAS  Google Scholar 

  • R. Meyer, A.I. Kirkland, W.O. Saxton: A new method for the determination of the wave aberration function for high resolution TEM. I. Measurement of the symmetric aberrations, Ultramicroscopy 92, 89–109 (2002)

    CAS  Google Scholar 

  • R. Meyer, A.I. Kirkland, W.O. Saxton: A new method for the determination of the wave aberration function for high resolution TEM. II. Measurement of the antisymmetric aberrations, Ultramicroscopy 99, 115–123 (2004)

    CAS  Google Scholar 

  • A.R. Lupini: The electron Ronchigram. In: Scanning Transmission Electron Microscopy. Imaging and Analysis, ed. by S.J. Pennycook, P.D. Nellist (Springer, New York 2011) pp. 117–161

    Google Scholar 

  • A.R. Lupini, M. Chi, S. Jesse: Rapid aberration measurement with pixelated detectors, J. Microsc. (Oxford) 263, 43–50 (2016)

    CAS  Google Scholar 

  • F. Zemlin, K. Weiss, P. Schiske, W. Kunath, K.-H. Herrmann: Coma-free alignment of high resolution electron microscopes with the aid of optical diffractograms, Ultramicroscopy 3, 49–60 (1978)

    Google Scholar 

  • F. Zemlin: A practical procedure for alignment of a high resolution electron microscope, Ultramicroscopy 4, 241–224 (1979)

    Google Scholar 

  • O.L. Krivanek: EM contrast transfer functions for tilted illumination imaging. In: Proc. 9th Int. Electron Microsc. Congr, Vol. 1, ed. by J.M. Sturgess (Microscopical Society of Canada, Toronto 1978) pp. 168–169

    Google Scholar 

  • W. Glaser: Über elektronenoptische Abbildung bei gestörter Rotationssymmetrie, Z. Phys. 120, 1–15 (1942)

    CAS  Google Scholar 

  • P.A. Sturrock: The aberrations of magnetic electron lenses due to asymmetries. In: Proc. First Conf. Electron Microsc., 1949, ed. by A.L. Houwink, J.B. Le Poole, W.A. Le Rütte (Hoogland, Delft 1950) pp. 89–93

    Google Scholar 

  • P.A. Sturrock: The aberrations of magnetic electron lenses due to asymmetries, Philos. Trans. Royal Soc. A 243, 387–429 (1951)

    Google Scholar 

  • G.D. Archard: Magnetic electron lens aberrations due to mechanical defects, J. Sci. Instrum. 30, 352–358 (1953)

    Google Scholar 

  • W. Glaser, P. Schiske: Bildstörungen durch Polschuhasymmetrien bei Elektronenlinsen, Z. Angew. Phys. 5, 329–339 (1953)

    Google Scholar 

  • G.V. Der-Shvarts: Influence of imperfections of the rotational symmetry of the focusing fields on the resolution of the magnetic objectives of electron microscopes, Zh. Tekh. Fiz. 24, 859–870 (1954)

    Google Scholar 

  • P.A. Stoyanov: The effect of departures of the geometrical shape of the polepieces of an objective from circular symmetry on the resolving power of the electron microscope, Zh. Tekh. Fiz. 25, 625–635 (1955)

    Google Scholar 

  • K.-H. Herrmann, P. Schiske, F. Zemlin: Einfluß und Nachweis des dreizähligen Astigmatismus in der Hochauflösungsmikroskopie, Mikroskopie 32, 235 (1976)

    Google Scholar 

  • M.I. Yavor: Methods for calculation of parasitic aberrations and machining tolerances in electron optical systems, Adv. Electron. Electron Phys. 86, 225–281 (1993)

    Google Scholar 

  • P.W. Hawkes: Aberration correction. In: Science of Microscopy, ed. by P.W. Hawkes, J.C.H. Spence (Springer, New York 2007) pp. 696–750

    Google Scholar 

  • P.W. Hawkes: Aberration correction past and present, Philos. Trans. Royal Soc. A 367, 3637–3664 (2009)

    CAS  Google Scholar 

  • P.W. Hawkes: The correction of electron lens aberrations, Ultramicroscopy 156, A1–A64 (2015)

    CAS  Google Scholar 

  • H. Rose: Historical aspects of aberration correction, J. Electron Microsc. 58, 77–85 (2009)

    Google Scholar 

  • R. Erni: Aberration-corrected Imaging in Transmission Electron Microscopy: An Introduction, 2nd edn. (Imperial College Press, London 2015)

    Google Scholar 

  • P.W. Hawkes (Ed.): Aberration-corrected electron microscopy, Adv. Imaging Electron Phys. 153 (2008)

    Google Scholar 

  • R. Brydson (Ed.): Aberration-Corrected Analytical Electron Microscopy (Wiley and the Royal Microscopical Society, Chichester, Oxford 2011)

    Google Scholar 

  • B. Lencová, M. Lenc: Computation of multi-lens focusing systems, Nucl. Instrum. Methods Phys. Res. A 298, 45–55 (1990)

    Google Scholar 

  • B. Lencová, M. Lenc: Computation of properties of electrostatic lenses, Optik 97, 121–126 (1994)

    Google Scholar 

  • B. Lencová, M. Lenc: Third order geometrical and first order chromatic aberrations of electrostatic lenses, Optik 105, 121–128 (1997)

    Google Scholar 

  • H. Rose: Über die Korrigierbarkeit von Linsen für schnelle Elektronen, Optik 26, 289–298 (1967)

    Google Scholar 

  • D. Preikszas, H. Rose: Procedures for minimizing the aberrations of electromagnetic compound lenses, Optik 100, 179–187 (1995)

    Google Scholar 

  • W. Glaser: Über ein von sphärischer Aberration freies Magnetfeld, Z. Phys. 116, 19–33 (1940)

    Google Scholar 

  • A. Recknagel: Über die sphärische Aberration bei elektronenoptischer Abbildung, Z. Phys. 117, 67–73 (1941)

    Google Scholar 

  • S. Nomura: Aberration-free electron microscope composed of round lenses. In: Proc. 8th Asia–Pac. Conf. Electron Microsc., Kanazawa (2004) pp. 34–35

    Google Scholar 

  • S. Nomura: Design of an apochromatic TEM composed of usual round lenses. In: Proc. 14th Eur. Microsc. Congr., Aachen, Vol. 1, ed. by M. Luysberg, K. Tillmann (Springer, Berlin 2008) pp. 41–42

    Google Scholar 

  • P.W. Hawkes: Can the Nomura lens be free of spherical aberration?, J. Microsc. (Oxford) 234, 325 (2009)

    CAS  Google Scholar 

  • W. Tretner: Existenzbereiche rotationssymmetrischer Elektronenlinsen, Optik 16, 155–184 (1959)

    Google Scholar 

  • W.D. Riecke: Practical lens design. In: Magnetic Electron Lenses, ed. by P.W. Hawkes (Springer, Berlin-Heidelberg 1982) pp. 163–357

    Google Scholar 

  • T. Yanaka, A. Yonezawa, A. Oosawa, T. Iwaki, S. Suzuki, O. Nakamura, M. Watanabe: Development of ultra-high resolution analytical electron microscope ISI-EM-002A, Proc. Annu. Meet. EMSA 41, 312–313 (1982)

    Google Scholar 

  • O. Scherzer: The theoretical resolution limit of the electron microscope, J. Appl. Phys. 20, 20–29 (1949)

    CAS  Google Scholar 

  • O.L. Krivanek, M.F. Chisholm, N. Dellby, M.F. Murfitt: Atomic-resolution STEM at low primary energies. In: Scanning Transmission Electron Microscopy: Imaging and Analysis, ed. by S.J. Pennycook, P.D. Nellist (Springer, Berlin-Heidelberg 2011) pp. 613–656

    Google Scholar 

  • H. Ichinose, H. Sawada, E. Takuma, M. Osaki: Atomic resolution HVEM and environmental noise, J. Electron Microsc. 48, 887–889 (1999)

    CAS  Google Scholar 

  • P.W. Hawkes: Signposts in electron optics, Adv. Imaging Electron Phys. 123, 1–28 (2002)

    CAS  Google Scholar 

  • R. Seeliger: Versuche zur sphärischen Korrektur von Elektronenlinsen mittels nicht rotationssymmetrischer Abbildungselemente, Optik 5, 490–496 (1949)

    Google Scholar 

  • R. Seeliger: Die sphärische Korrektur von Elektronenlinsen mittels nicht-rotationssymmetrischer Abbildungselemente, Optik 8, 311–317 (1951)

    Google Scholar 

  • G. Möllenstedt: Elektronenmikroskopische Bilder mit einem nach O. Scherzer sphärisch korrigierten Objektiv, Optik 13, 209–215 (1956)

    Google Scholar 

  • G.D. Archard: Requirements contributing to the design of devices used in correcting electron lenses, Brit. J. Appl. Phys. 5, 294–299 (1954)

    Google Scholar 

  • J.C. Burfoot: Correction of electrostatic lenses by departure from rotational symmetry, Proc. Phys. Soc. B 66, 775–792 (1953)

    Google Scholar 

  • J.M.H. Deltrap: Correction of spherical aberration with combined quadrupole–octopole units. In: Proc. 3rd Eur. Reg. Conf. Electron. Microsc., Vol. A, ed. by M. Titlbach (Czechoslovak Academy of Sciences, Prague 1964) pp. 45–46

    Google Scholar 

  • D.F. Hardy: Combined Magnetic and Electrostatic Quadrupole Electron Lenses, Ph.D. Thesis (University of Cambridge, Cambridge 1967)

    Google Scholar 

  • M. Haider: Towards sub-ångstrom point resolution by correction of spherical aberration. In: Proc. 12th Eur. Congr. Electron Microsc, Vol. III, ed. by P. Tománek, R. Kolařík (Czechoslovak Society for Electron Microscopy, Brno 2000) pp. I.145–I.148

    Google Scholar 

  • H. Müller, S. Uhlemann, P. Hartel, M. Haider: Aberration-corrected optics: From an idea to a device, Phys. Procedia 1, 167–178 (2008)

    Google Scholar 

  • D. Gabor: The Electron Microscope (Hulton, London 1945)

    Google Scholar 

  • M. Linck, P.A. Ercius, J.S. Pierce, B.J. McMorran: Aberration corrected STEM by means of diffraction gratings, Ultramicroscopy 182, 36–43 (2017)

    CAS  Google Scholar 

  • A. Khursheed, W.K. Ang: On-axis electrode aberration correctors for scanning electron/ion microscopes, Microsc. Microanal. 21, 106–111 (2015)

    Google Scholar 

  • A. Khursheed, W.K. Ang: Annular focused electron/ion beams for combining high spatial resolution with high probe current, Microsc. Microanal. 22, 948–954 (2016)

    CAS  Google Scholar 

  • T. Kawasaki, T. Ishida, M. Tomita, T. Kodama, T. Matsutani, T. Ikuta: Development of a new electrostatic Cs-corrector consisted of annular and circular electrodes. In: Proc. 16th Eur. Microsc. Congr., Lyon, Vol. 1, ed. by O. Stéphan, M. Hÿtch, B. Satiat-Jeunemaître, C. Venien-Bryan, P. Bayle-Guillemaud, T. Epicier (Wiley-VCH, Weinheim 2016) pp. 430–432

    Google Scholar 

  • T. Kawasaki, R. Yoshida, T. Kato, T. Nomaguchi, T. Agemura, T. Kodama, M. Tomita, T. Ikuta: Development of compact Cs/Cc corrector with annular and circular electrodes, Microsc. Microanal. 23(Suppl. 1), 466–467 (2017)

    Google Scholar 

  • G.D. Archard: A possible chromatic aberration system for electron lenses, Proc. Phys. Soc. B 68, 817–829 (1955)

    Google Scholar 

  • V.M. Kel'man, S.Ya. Yavor: Achromatic quadrupole electron lenses, Zh. Tekh. Fiz. 31, 1439–1442 (1961)

    Google Scholar 

  • V.M. Kel'man, S.Ya. Yavor: Achromatic quadrupole electron lenses, Sov. Phys. Tech. Phys. 6, 1052–1054 (1961)

    Google Scholar 

  • A. Septier: Lentille quadrupolaire magneto-électrique corrigée de l’aberration chromatique. Aberration d’ouverture de ce type de lentilles, C. R. Acad. Sci. Paris 256, 2325–2328 (1963)

    Google Scholar 

  • P.W. Hawkes: The paraxial chromatic aberrations of quadrupole systems. In: Proc. 3rd Eur. Reg. Conf. Electron Microsc., Vol. A, ed. by M. Titlbach (Czechoslovak Academy of Sciences, Prague 1964) pp. 5–6

    Google Scholar 

  • P.W. Hawkes: The paraxial chromatic aberrations of rectilinear orthogonal systems, Optik 22, 543–551 (1965)

    Google Scholar 

  • H. Rose: Inhomogeneous Wien filter as a corrector for the chromatic and spherical aberration of low-voltage electron microscopes, Optik 84, 91–107 (1990)

    Google Scholar 

  • K. Tsuno, D. Ioanoviciu, G. Martínez: Aberration corrected Wien filter as a monochromator of high spatial and high energy resolution electron microscopes, Microsc. Microanal. 9(Suppl. 2), 944–945 (2003)

    Google Scholar 

  • G. Schönhense, H. Spiecker: Correction of chromatic and spherical aberration in electron microscopy utilizing the time structure of pulsed electron sources, J. Vac. Sci. Technol. B 20, 2526–2534 (2002)

    Google Scholar 

  • A. Khursheed: A method of dynamic chromatic correction in low-voltage scanning electron microscopes, Ultramicroscopy 103, 255–260 (2005)

    CAS  Google Scholar 

  • G. Schönhense, H. Spiecker: Chromatic and spherical correction using time-dependent acceleration and lens fields, Microsc. Microanal. 9(Suppl. 3), 34–35 (2003)

    Google Scholar 

  • G.F. Rempfer: A theoretical study of the hyperbolic electron mirror as a correcting element for spherical and chromatic aberration in electron optics, J. Appl. Phys. 67, 6027–6040 (1990)

    CAS  Google Scholar 

  • G.F. Rempfer, M.S. Mauck: Correction of chromatic aberration with an electron mirror, Optik 92, 3–8 (1992)

    Google Scholar 

  • R. Fink, M.R. Weiss, E. Umbach, D. Preikszas, H. Rose, R. Spehr, P. Hartel, W. Engel, R. Degenhardt, R. Wichtendahl, H. Kuhlenbeck, W. Erlebach, K. Ihmann, R. Schlögl, H.-J. Freund, A.M. Bradshaw, G. Lilienkamp, T. Schmidt, E. Bauer, G. Benner: SMART: A planned ultrahigh-resolution spectromicroscope for BESSY II, J. Electron Spectrosc. Relat. Phenom. 84, 231–250 (1997)

    CAS  Google Scholar 

  • R. Wichtendahl, R. Fink, H. Kuhlenbeck, D. Preikszas, H. Rose, R. Spehr, P. Hartel, W. Engel, R. Schlögl, H.-J. Freund, A.M. Bradshaw, G. Lilienkamp, T. Schmidt, E. Bauer, G. Benner, E. Umbach: SMART: An aberration-corrected XPEEM/LEEM with energy filter, Surf. Rev. Lett. 5, 1249–1256 (1998)

    CAS  Google Scholar 

  • H. Müller, D. Preikszas, H. Rose: A beam separator with small aberrations, J. Electron Microsc. 48, 191–204 (1999)

    Google Scholar 

  • P. Hartel, D. Preikszas, R. Spehr, H. Rose: Performance of the mirror corrector for an ultrahigh-resolution spectromicroscope. In: Proc. 12th Eur. Congr. Electron Microsc, Vol. III, ed. by P. Tománek, R. Kolařík (Czechoslovak Society for Electron Microscopy, Brno 2000) pp. I.153–I.154

    Google Scholar 

  • P. Hartel, D. Preikszas, R. Spehr, H. Müller, H. Rose: Mirror corrector for low-voltage electron microscopes, Adv. Imaging Electron Phys. 120, 41–133 (2002)

    Google Scholar 

  • D. Preikszas, P. Hartel, R. Spehr, H. Rose: SMART electron optics. In: Proc. 12th Eur. Congr. Electron Microsc, Vol. III, ed. by P. Tománek, R. Kolařík (Czechoslovak Society for Electron Microscopy, Brno 2000) pp. I.181–I.184

    Google Scholar 

  • W. Wan, J. Feng, H.A. Padmore, D.S. Robin: Simulation of a mirror corrector for PEEM, Nucl. Instrum. Methods Phys. Res. A 519, 222–229 (2004)

    CAS  Google Scholar 

  • Y.K. Wu, D.S. Robin, E. Forest, R. Schleuter, S. Anders, J. Feng, H. Padmore, D.H. Wei: Design and analysis of beam separator magnets for third generation aberration compensated PEEMs, Nucl. Instrum. Methods Phys. Res. A 519, 230–241 (2004)

    CAS  Google Scholar 

  • R.M. Tromp, J.B. Hannon, A.W. Ellis, W. Wan, A. Berghaus, O. Schaff: A new aberration-corrected, energy-filtered LEEM/PEEM instrument. I. Principles and design, Ultramicroscopy 110, 852–861 (2010)

    CAS  Google Scholar 

  • R.M. Tromp, J.B. Hannon, W. Wan, A. Berghaus, O. Schaff: A new aberration-corrected, energy-filtered LEEM/PEEM instrument II. Operation and results, Ultramicroscopy 127, 25–39 (2013)

    CAS  Google Scholar 

  • R.M. Tromp: Measuring and correcting aberrations of a cathode objective lens, Ultramicroscopy 111, 273–281 (2011)

    CAS  Google Scholar 

  • H. Rose, D. Preikszas: Outline of a versatile corrected LEEM, Optik 92, 31–44 (1992)

    Google Scholar 

  • H. Dohi, P. Kruit: Design for an aberration corrected scanning electron microscope using miniature electron mirrors, Ultramicroscopy 189, 1–23 (2018)

    CAS  Google Scholar 

  • G.D. Archard: An unconventional electron lens, Proc. Phys. Soc. B 72, 135–137 (1958)

    Google Scholar 

  • M. Reichenbach, H. Rose: Entwurf eines korrigierten magnetischen Objektivs, Optik 28, 475–487 (1968)

    Google Scholar 

  • H. Rose: Berechnung eines elektronenoptischen Apochromaten, Optik 32, 144–164 (1970)

    Google Scholar 

  • H. Rose: Abbildungseigenschaften sphärisch korrigierter elektronenoptischer achromate, Optik 33, 1–24 (1971)

    Google Scholar 

  • H. Rose: Elektronenoptische Aplanate, Optik 34, 285–311 (1971)

    Google Scholar 

  • B. Bastian, K. Spengler, D. Typke: An electric–magnetic octupole element to correct spherical and chromatic aberrations of electron lenses, Optik 33, 591–596 (1971)

    Google Scholar 

  • W. Pöhner: Ein in dritter und fünfter Ordnung sphärisch korrigierter elektronenoptischer Aplanat, Optik 45, 443–454 (1976)

    Google Scholar 

  • W. Pöhner: Ein sphärisch korrigierter elektronenoptischer Apochromat, Optik 47, 283–297 (1977)

    Google Scholar 

  • W. Bernhard, H. Koops: Kompensation der Farbabhängigkeit der Vergrößerung und der Farbabhängigkeit der Bilddrehung eines Elektronenmikroskops, Optik 47, 55–64 (1977)

    Google Scholar 

  • H. Koops, G. Kuck, O. Scherzer: Erprobung eines elektronenoptischen Achromators, Optik 48, 225–236 (1977)

    Google Scholar 

  • H. Koops: Aberration correction in electron microscopy. In: Proc. 9th Int. Congr. Electron Microsc., Vol. 3, ed. by J.M. Sturgess (Microscopical Society of Canada, Toronto 1978) pp. 185–196

    Google Scholar 

  • H. Koops: Erprobung eines chromatisch korrigierten elektronenmikroskopischen Objektives, Optik 52, 1–18 (1978)

    Google Scholar 

  • H. Koops, W. Bernhard: An objective lens for an electron microscope with compensated axial chromatic aberration. In: Proc. 9th Int. Congr. Electron Microsc., Vol. 1, ed. by J.M. Sturgess (Microscopical Society of Canada, Toronto 1978) pp. 36–37

    Google Scholar 

  • W. Pejas: Magnetische Abschirmung eines korrigierten Elektronenmikroskops, Optik 50, 61–72 (1978)

    Google Scholar 

  • G. Kuck: Erprobung eines elektronenoptischen Korrektivs für Farb- und Öffnungsfehler, Ph.D. Thesis (Technical University of Darmstadt, Darmstadt 1979)

    Google Scholar 

  • W. Bernhard: Erprobung eines sphärisch und chromatisch korrigierten Elektronenmikroskops, Optik 57, 73–94 (1980)

    Google Scholar 

  • G. Fey: Elektrische Versorgung eines elektronenoptischen Korrektivs, Optik 55, 55–65 (1980)

    Google Scholar 

  • H. Hely: Messungen an einem verbesserten korrigierten Elektronenmikroskop, Optik 60, 353–370 (1982)

    Google Scholar 

  • H. Hely: Technologische Voraussetzungen für die Verbesserung der Korrektur von Elektronenlinsen, Optik 60, 307–326 (1982)

    Google Scholar 

  • O. Scherzer: Limitations for the resolving power of electron microscopes. In: Proc. 9th Int. Congr. Electron Microsc., Vol. 3, ed. by J.M. Sturgess (Microscopical Society of Canada, Toronto 1978) pp. 123–129

    Google Scholar 

  • A.V. Crewe, D. Cohen, P. Meads: A multipole element for the correcting of spherical aberration. In: Proc. 4th Reg. Conf. Electron. Microsc., Vol. I, ed. by D.S. Bocciarelli (Tipographia Poliglotta Vaticana, Rome 1968) p. 183

    Google Scholar 

  • M.G.R. Thomson: The primary aberrations of a quadrupole corrector system, Optik 34, 528–534 (1972)

    Google Scholar 

  • V. Beck, A.V. Crewe: A quadrupole octupole corrector for a 100 kV STEM, Proc. Annu. Meet. EMSA 32, 426–427 (1974)

    Google Scholar 

  • V. Beck, A.V. Crewe: Progress in aberration correction in a STEM, Proc. Annu. Meet. EMSA 34, 578–579 (1976)

    Google Scholar 

  • V. Beck: Experiments with a quadrupole–octupole corrector in a STEM, Proc. Annu. Meet. EMSA 35, 90–91 (1977)

    Google Scholar 

  • A.V. Crewe: Is there a future for the STEM? In: Proc. 9th Int. Congr. Electron. Microsc., Vol. 3, ed. by J.M. Sturgess (Microscopical Society of Canada, Toronto 1978) pp. 197–204

    Google Scholar 

  • A.V. Crewe: The work of Albert Victor Crewe on the scanning transmission electron microscope and related topics, Adv. Imaging Electron Phys. 159, 1–61 (2009)

    Google Scholar 

  • J. Zach: Design of a high-resolution low-voltage scanning electron microscope, Optik 83, 30–40 (1989)

    Google Scholar 

  • J. Zach: Aspects of aberration correction in LVSEM. In: Proc. 12th Eur. Congr. Electron Microsc., Vol. III, ed. by P. Tománek, R. Kolařík (Czechoslovak Society for Electron Microscopy, Brno 2000) pp. I.169–I.172

    Google Scholar 

  • J. Zach, M. Haider: Correction of spherical and chromatic aberration in a low-voltage SEM, Optik 98, 112–118 (1995)

    Google Scholar 

  • J. Zach, M. Haider: Aberration correction in a low voltage SEM by a multipole corrector, Nucl. Instrum. Methods Phys. Res. A 363, 316–325 (1995)

    CAS  Google Scholar 

  • K. Honda, S. Uno, N. Nakamura, M. Matsuya, B. Achard, J. Zach: An automatic geometrical aberration correction system of scanning electron microscopes. In: Proc. 13th Eur. Microsc. Congr., Antwerp, Vol. I, ed. by D. van Dyck, P. van Oostveldt (Belgian Society for Microscopy, Liège 2004) pp. 43–44

    Google Scholar 

  • K. Honda, S. Uno, N. Nakamura, M. Matsuya, J. Zach: An automatic geometrical aberration correction system of scanning electron microscopes. In: Proc. 8th Asia–Pac. Conf. Electron Microsc., Kanazawa, ed. by N. Tanaka, Y. Takano, H. Mori, H. Seguchi, S. Iseki, H. Shimada, E. Simamura (8APEM Publication Committee, Uchinada 2004) pp. 44–45

    Google Scholar 

  • H. Kazumori, K. Honda, M. Matsuya, M. Date, C. Nielsen: Field emission SEM with a spherical and chromatic aberration corrector, Microsc. Microanal. 10(Suppl. 2), 1370–1371 (2004)

    Google Scholar 

  • H. Kazumori, K. Honda, M. Matuya, M. Date: Field emission SEM with a spherical and chromatic aberration corrector. In: Proc. 8th Asia–Pac. Conf. Electron. Microsc., Kanazawa, ed. by N. Tanaka, Y. Takano, H. Mori, H. Seguchi, S. Iseki, H. Shimada, E. Simamura (8APEM Publication Committee, Uchinada 2004) pp. 52–53

    Google Scholar 

  • S. Uno, K. Honda, N. Nakamura, M. Matsuya, B. Achard, J. Zach: An automated aberration correction method in scanning electron microscopes. In: Proc. 13th Eur. Microsc. Congr., Antwerp, Vol. I, ed. by D. van Dyck, P. van Oostveldt (Belgian Society for Microscopy, Liège 2004) pp. 37–38

    Google Scholar 

  • S. Uno, K. Honda, N. Nakamura, M. Matsuya, J. Zach: Probe shape extraction and automatic aberration correction in scanning electron microscopes. In: Proc. 8th Asia–Pac. Conf. Electron Microsc., Kanazawa, ed. by N. Tanaka, Y. Takano, H. Mori, H. Seguchi, S. Iseki, H. Shimada, E. Simamura (8APEM Publication Committee, Uchinada 2004) pp. 46–47

    Google Scholar 

  • S. Uno, K. Honda, N. Nakamura, M. Matsuya, J. Zach: Aberration correction and its automatic control in scanning electron microscopes, Optik 16, 438–448 (2005)

    Google Scholar 

  • O.L. Krivanek, N. Dellby, A.J. Spence, A. Camps, L.M. Brown: Aberration correction in the STEM. In: Proc. EMAG 1997, ed. by J.M. Rodenburg (Institute of Physics, Bristol 1997) pp. 35–39

    Google Scholar 

  • O.L. Krivanek, N. Dellby, A.J. Spence, R.A. Camps, L.M. Brown: On-line aberration measurement and correction in STEM, Microsc. Microanal. 3(Suppl. 2), 1171–1172 (1997)

    Google Scholar 

  • O.L. Krivanek, N. Dellby, L.M. Brown: Spherical aberration corrector for a dedicated STEM. In: Proc. EUREM-11, 11th Eur. Conf. Electron. Microsc., Dublin 1996, Vol. I, ed. by CESEM (CESEM, Brussels 1998) pp. 352–353

    Google Scholar 

  • O.L. Krivanek, N. Dellby, A.R. Lupini: STEM without spherical aberration, Microsc. Microanal. 5(Suppl. 2), 670–671 (1999)

    Google Scholar 

  • O.L. Krivanek, N. Dellby, A.R. Lupini: Advances in Cs-corrected STEM. In: Proc. 12th Eur. Congr. Electron Microsc., Vol. III, ed. by P. Tománek, R. Kolařík (Czechoslovak Society for Electron Microscopy, Brno 2000) pp.  I.149–I.150

    Google Scholar 

  • N. Dellby, O.L. Krivanek, P.D. Nellist, P.E. Batson, A.R. Lupini: Progress in aberration-corrected scanning transmission electron microscopy, J. Electron Microsc. 50, 177–185 (2001)

    CAS  Google Scholar 

  • P.E. Batson, N. Dellby, O.L. Krivanek: Sub-ångstrom resolution using aberration corrected optics, Nature 418, 617–620 (2002)

    CAS  Google Scholar 

  • P.E. Batson: Aberration correction results in the IBM STEM instrument, Ultramicroscopy 96, 239–249 (2003)

    CAS  Google Scholar 

  • P.D. Nellist, N. Dellby, O.L. Krivanek, M.F. Murfitt, Z. Szilagyi, A.R. Lupini, S.J. Pennycook: Towards sub 0.5 angstrom beams through aberration corrected STEM. In: Proc. EMAG 2003, ed. by S. McVitie, D. McComb (Institute of Physics Publishing, Bristol and Philadelphia 2004) pp. 159–164

    Google Scholar 

  • P.D. Nellist, M.F. Chisholm, N. Dellby, O.L. Krivanek, M.F. Murfitt, Z.S. Szilagyi, A.R. Lupini, A. Borisevich, W.H. Sides, S.J. Pennycook: Direct sub-angstrom imaging of a crystal lattice, Science 305, 1741 (2004)

    CAS  Google Scholar 

  • O.L. Krivanek, P.D. Nellist, N. Dellby, M.F. Murfitt, Z. Szilagyi: Towards sub-0.5 Å beams, Ultramicroscopy 96, 229–237 (2003)

    CAS  Google Scholar 

  • O.L. Krivanek, G.J. Corbin, N. Dellby, M. Murfitt, K. Nagesha, P.D. Nellist, Z. Szilagyi: Nion UltraSTEM: A new STEM for sub-0.5 Å imaging and sub-0.5 eV analysis. In: Proc. 13th Eur. Microsc. Congr., Antwerp, Vol. I, ed. by D. van Dyck, P. van Oostveldt (Belgian Society for Microscopy, Liège 2004) pp. 35–36

    Google Scholar 

  • N. Dellby, O.L. Krivanek, M.F. Murfitt, P.D. Nellist: Design and testing of a quadrupole/octupole C3/C5 aberration corrector, Microsc. Microanal. 11(Suppl. 2), 2130–2131 (2005)

    Google Scholar 

  • N. Dellby, O.L. Krivanek, M.F. Murfitt: Optimized quadrupole-octupole C3/C5 aberration corrector for STEM, Phys. Procedia 1, 179–183 (2008)

    Google Scholar 

  • N. Dellby, G.J. Corbin, Z. Dellby, T.C. Lovejoy, Z.S. Szilagyi, M.F. Chisholm, O.L. Krivanek: Tuning high order geometric aberrations in quadrupole-octupole correctors, Microsc. Microanal. 20(Suppl. 3), 928–929 (2014)

    Google Scholar 

  • S.A.M. Mentink, M.J. van der Zande, C. Kok, T.L. van Rooy: Development of a Cs corrector for a Tecnai 20 FEG STEM/TEM. In: Proc. EMAG 2003, ed. by S. McVitie, D. McComb (Institute of Physics Publishing, Bristol 2004) pp. 165–168

    Google Scholar 

  • P.W. Hawkes: The geometrical aberrations of general electron optical systems, I and II, Philos. Trans. Royal Soc. A 257, 479–552 (1965)

    Google Scholar 

  • V.D. Beck: A hexapole spherical aberration corrector, Optik 53, 241–255 (1979)

    Google Scholar 

  • H. Rose: Correction of aperture aberrations in magnetic systems with threefold symmetry, Nucl. Instrum. Methods 187, 187–199 (1981)

    Google Scholar 

  • A.V. Crewe: Studies on sextupole correctors, Optik 57, 313–327 (1980)

    Google Scholar 

  • A.V. Crewe: A system for the correction of axial aperture aberrations in electron lenses, Optik 60, 271–281 (1982)

    Google Scholar 

  • A.V. Crewe, D. Kopf: A sextupole system for the correction of spherical aberration, Optik 55, 1–10 (1980)

    Google Scholar 

  • A.V. Crewe, D. Kopf: Limitations of sextupole correctors, Optik 56, 391–399 (1980)

    Google Scholar 

  • M. Haider, W. Bernhardt, H. Rose: Design and test of an electric and magnetic dodecapole lens, Optik 63, 9–23 (1982)

    Google Scholar 

  • M. Haider, G. Braunshausen, E. Schwan: Correction of the spherical aberration of a 200 kV TEM by means of a hexapole-corrector, Optik 99, 167–179 (1995)

    Google Scholar 

  • M. Haider, S. Uhlemann, E. Schwan, H. Rose, B. Kabius, K. Urban: Electron microscopy image enhanced, Nature 392, 768–769 (1998)

    CAS  Google Scholar 

  • M. Haider, H. Rose, S. Uhlemann, B. Kabius, K. Urban: Towards 0.1 nm resolution with the first spherically corrected transmission electron microscope, J. Electron Microsc. 47, 395–405 (1998)

    CAS  Google Scholar 

  • M. Haider, H. Rose, S. Uhlemann, E. Schwan, B. Kabius, K. Urban: A spherical-aberration-corrected 200 kV transmission electron microscope, Ultramicroscopy 75, 53–60 (1998)

    CAS  Google Scholar 

  • H. Rose: Outline of a spherically corrected semiaplanatic medium-voltage TEM, Optik 85, 19–24 (1990)

    Google Scholar 

  • H. Rose: Correction of aberrations, a promising method for improving the performance of electron microscopes. In: Proc. 10th Eur. Congr. Electron Microsc., Vol. 1, ed. by A. Ríos, J.M. Arias, L. Megías-Megías, A. López-Galindo (Secretariado de Publicaciones de la Universidad de Granada, Granada 1992) pp. 47–48

    Google Scholar 

  • H. Rose: Correction of aberrations – past, present and future, Microsc. Microanal. 8(Suppl. 2), 6–7 (2002)

    Google Scholar 

  • M. Haider, S. Uhlemann: Seeing is not believing: Reduction of artefacts by an improved point resolution with a spherical aberration corrected 200 kV transmission electron microscope, Microsc. Microanal. 3(Suppl. 2), 1179–1180 (1997)

    Google Scholar 

  • M. Haider: Correctors for electron microscopes: Tools or toys for scientists? In: Proc. 11th Eur. Conf. Electron Microsc., Dublin 1996, Vol. I (CESEM, Brussels 1998) pp. 363–364

    Google Scholar 

  • M. Haider: Current and future developments in order to approach a point resolution of dpr ∼ 0.5 Å with a TEM, Microsc. Microanal. 9(Suppl. 2), 930–931 (2003)

    Google Scholar 

  • M. Foschepoth, H. Kohl: Amplitude contrast—A way to obtain directly interpretable high-resolution images in a spherical-aberration-corrected transmission electron microscope, Phys. Status Solidi (a) 166, 357–366 (1998)

    CAS  Google Scholar 

  • S. Uhlemann, M. Haider, E. Schwan, H. Rose: Towards a resolution enhancement in the corrected TEM. In: Proc. EUREM-11, 11th Eur. Conf. Electron Microsc., Dublin 1996, Vol. I (CESEM, Brussels 1998) pp. 365–366

    Google Scholar 

  • K. Urban, B. Kabius, M. Haider, H. Rose: A way to higher resolution: Spherical-aberration correction in a 200 kV transmission electron microscope, J. Electron Microsc. 48, 821–826 (1999)

    CAS  Google Scholar 

  • H. Müller, S. Uhlemann, M. Haider: Benefits and possibilities for Cc-correction in TEM/STEM, Microsc. Microanal. 8(Suppl. 2), 12–13 (2002)

    Google Scholar 

  • H. Müller, M. Haider, P. Hartel, S. Uhlemann, J. Zach: Improved aberration correctors for the conventional and the scanning transmission electron microscope, Recent Trends Charged Part. Opt. Surf. Phys. Instrum. 12, 39–40 (2010)

    Google Scholar 

  • H. Müller, I. Maßmann, S. Uhlemann, P. Hartel, J. Zach, M. Haider: Aplanatic imaging systems for the transmission electron microscope, Nucl. Instrum. Methods Phys. Res. A 645, 20–27 (2011)

    Google Scholar 

  • H. Müller, I. Maßmann, S. Uhlemann, P. Hartel, J. Zach, M. Haider: Practical aspects of an aplanatic transmission electron microscope, Recent Trends Charged Part. Opt. Surf. Phys. Instrum. 13, 47–48 (2012)

    Google Scholar 

  • B. Kabius, M. Haider, S. Uhlemann, E. Schwan, K. Urban, H. Rose: First application of a spherical-aberration corrected transmission electron microscope in materials science, J. Electron Microsc. 51, S51–S58 (2002)

    Google Scholar 

  • M. Lentzen, B. Jahnen, C.L. Jia, A. Thust, K. Tillmann, K. Urban: High-resolution imaging with an aberration-corrected transmission electron microscope, Ultramicroscopy 92, 233–242 (2002)

    CAS  Google Scholar 

  • H. Liu, E. Munro, J. Rouse, X. Zhu: Simulation methods for multipole imaging systems and aberration correctors, Ultramicroscopy 93, 271–291 (2002)

    CAS  Google Scholar 

  • G. Benner, A. Orchowski, M. Haider, P. Hartel: State of the first aberration-corrected, monochromatized 200 kV FEG-TEM, Microsc. Microanal. 9(Suppl. 3), 938–939 (2003)

    Google Scholar 

  • G. Benner, E. Essers, M. Matijevic, A. Orchowski, P. Schlossmacher, A. Thesen: Performance of monochromized and aberration-corrected TEMs, Microsc. Microanal. 10(Suppl. 2), 108–109 (2004)

    Google Scholar 

  • G. Benner, M. Matijevic, A. Orchowski, P. Schlossmacher, A. Thesen, M. Haider, P. Hartel: Sub-ångstrom and sub-eV resolution with the analytical SATEM, Microsc. Microanal. 10(Suppl. 3), 6–7 (2004)

    Google Scholar 

  • L.Y. Chang, F.R. Chen, A.I. Kirkland, J.J. Kai: Calculations of spherical aberration-corrected imaging behaviour, J. Electron Microsc. 52, 359–364 (2003)

    Google Scholar 

  • F. Hosokawa, T. Tomita, M. Naruse, T. Honda, P. Hartel, M. Haider: A spherical aberration-corrected 200 kV TEM, J. Electron Microsc. 52, 3–10 (2003)

    CAS  Google Scholar 

  • F. Hosokawa, T. Sannomiya, H. Sawada, T. Kaneyama, Y. Kondo, M. Hori, S. Yuasa, M. Kawazoe, Y. Nakamichi, T. Tanishiro, N. Yamamoto, K. Takayanagi: Design and development of Cs correctors for 300 kV TEM and STEM. In: Proc. 16th Int. Microsc. Conf., Sapporo, Vol. 2, ed. by H. Ichinose, T. Sasaki (2006) p. 582

    Google Scholar 

  • F. Hosokawa, H. Sawada, Y. Kondo, K. Takayanagi, K. Suenaga: Development of Cs and Cc correctors for transmission electron microscopy, Microscopy 62, 23–41 (2013)

    CAS  Google Scholar 

  • C.L. Jia, M. Lentzen, K. Urban: Atomic-resolution imaging of oxygen in perovskite ceramics, Science 299, 870–873 (2003)

    CAS  Google Scholar 

  • H. Sawada, T. Tomita, T. Kaneyama, F. Hosokawa, M. Naruse, T. Honda, P. Hartel, M. Haider, N. Tanaka, C.J.D. Hetherington, R.C. Doole, A.I. Kirkland, J.L. Hutchison, J.M. Titchmarsh, D.J.H. Cockayne: Cs corrector for imaging, Microsc. Microanal. 10(Suppl. 2), 978–979 (2004)

    Google Scholar 

  • H. Sawada, T. Tomita, M. Naruse, T. Honda, P. Hartel, M. Haider, C.J.D. Hetherington, R.C. Doole, A.I. Kirkland, J.L. Hutchison, J.M. Titchmarsh, D.J.H. Cockayne: Cs corrector for illumination, Microsc. Microanal. 10(Suppl. 2), 1004–1005 (2004)

    Google Scholar 

  • H. Sawada, T. Tomita, M. Naruse, T. Honda, P. Hartel, M. Haider, C.J.D. Hetherington, R.C. Doole, A.I. Kirkland, J.L. Hutchison, J.M. Titchmarsh, D.J.H. Cockayne: 200 kV TEM with Cs correctors for illumination and imaging. In: Proc. 8th Asia–Pac. Conf. Electron Microsc., Kanazawa, ed. by N. Tanaka, Y. Takano, H. Mori, H. Seguchi, S. Iseki, H. Shimada, E. Simamura (8APEM Publication Committee, Uchinada 2004) pp. 20–21

    Google Scholar 

  • H. Sawada, T. Sasaki, F. Hosokawa, S. Yuasa, M. Terao, M. Kawazoe, T. Nakamichi, T. Kaneyama, Y. Kondo, K. Kimoto, K. Suenaga: Correction of higher order geometrical aberration by triple 3-fold astigmatism field, J. Electron Microsc. 58, 341–347 (2009)

    CAS  Google Scholar 

  • H. Sawada, Y. Tanishiro, N. Ohashi, T. Tomita, F. Hosokawa, T. Kaneyama, Y. Kondo, K. Takayanagi: STEM imaging of 47-pm-separated atomic columns by a spherical aberration-corrected electron microscope with a 300-kV cold field emission gun, J. Electron Microsc. 58, 357–361 (2009)

    CAS  Google Scholar 

  • H. Sawada, T. Sasaki, F. Hosokawa, S. Yuasa, M. Terao, M. Kawazoe, T. Nakamichi, T. Kaneyama, Y. Kondo, K. Kimoto, K. Suenaga: Higher-order aberration corrector for an image-forming system in a transmission electron microscope, Ultramicroscopy 110, 958–961 (2010)

    CAS  Google Scholar 

  • M. Haider, M. Müller, P. Hartel: Present state and future trends of aberration correction. In: Proc. 8th Asia–Pac. Conf. Electron Microsc., Kanazawa, ed. by N. Tanaka, Y. Takano, H. Mori, H. Seguchi, S. Iseki, H. Shimada, E. Simamura (8APEM Publication Committee, Uchinada 2004) pp. 16–17

    Google Scholar 

  • M. Haider, P. Hartel, H. Müller, S. Uhlemann, J. Zach: Current and future aberration correctors for the improvement of resolution in electron microscopy, Philos. Trans. Royal Soc. A 367, 3665–3682 (2009)

    CAS  Google Scholar 

  • P. Hartel, H. Müller, S. Uhlemann, M. Haider: Residual aberrations of hexapole-type Cs–correctors. In: Proc. 13th Eur. Microsc. Congr. Antwerp, Vol. I, ed. by D. van Dyck, P. van Oostveldt (Belgian Society for Microscopy, Liège 2004) pp. 41–42

    Google Scholar 

  • J.M. Titchmarsh, D.J.H. Cockayne, R.C. Doole, C.J.D. Hetherington, J.L. Hutchison, A.I. Kirkland, H. Sawada: A versatile double aberration-corrected, energy-filtered HREM/STEM for materials science. In: Proc. 13th Eur. Microsc. Congr., Antwerp, Vol. I, ed. by D. van Dyck, P. van Oostveldt (Belgian Society for Microscopy, Liège 2004) pp. 27–28

    Google Scholar 

  • J.L. Hutchison, J.M. Titchmarsh, D.J.H. Cockayne, R.C. Doole, C.J.D. Hetherington, A.I. Kirkland, H. Sawada: A versatile double aberration-corrected energy filtered HREM/STEM for materials science, Ultramicroscopy 103, 7–15 (2005)

    CAS  Google Scholar 

  • H. Sawada: Ronchigram and geometrical aberrations in STEM. In: Scanning Transmission Electron Microscopy of Nanomaterials, ed. by N. Tanaka (Imperial College, London 2015) pp. 461–485

    Google Scholar 

  • S. Morishita, Y. Kohno, F. Hosokawa, K. Suenaga, H. Sawada: Evaluation of residual aberrations in higher-order geometrical aberration correctors, Microscopy 67, 156–163 (2017)

    Google Scholar 

  • T. Sasaki, S. Morishita, Y. Kohno, M. Mukai, K. Kimotao, K. Suenaga: Performance of low-kV aberration-corrected STEM with delta-corrector and CFEG in ultrahigh vacuum environment, Microsc. Microanal. 23(Suppl. 1), 468–469 (2017)

    Google Scholar 

  • G. Benner, E. Essers, B. Huber, A. Orchowski: Design and first results of SESAM, Microsc. Microanal. 9(Suppl. 3), 66–67 (2003)

    Google Scholar 

  • R. Nishi, H. Ito, S. Hoque: Wire corrector for aberration corrected electron optics. In: Proc. 18th Int. Microsc. Conf., Prague (2014), IT-1-P2984

    Google Scholar 

  • S. Hoque, H. Ito, R. Nishi, A. Takaoka, E. Munro: Spherical aberration correction with threefold symmetric line currents, Ultramicroscopy 161, 74–82 (2016)

    CAS  Google Scholar 

  • R. Nishi, S. Hoque, H. Ito, A. Takaoka: Higher order aberration analysis and optimization of N-SYLC spherical aberration corrector by differential algebra method, Kenbikyo 52(Suppl. 1), 23 (2017)

    Google Scholar 

  • S. Hoque, H. Ito, A. Takaoka, R. Nishi: Axial geometrical aberration correction up to 5th order with N-SYLC, Ultramicroscopy 182, 68–80 (2017)

    CAS  Google Scholar 

  • R. Janzen: Concept for electrostatic correctors for reduction of aberrations within miniaturized columns. In: Proc. MC-2011, Kiel (2011) IM1.p104

    Google Scholar 

  • R. Janzen, S. Burkhardt, P. Fehlner, T. Späth, M. Haider: The SPANOCH method: A key to establish aberration correction in miniaturized (multi)column systems? In: Proc. Microsc. Conf., Regensburg, Vol. 1, ed. by R. Rachel, J. Schröder, R. Witzgall, J. Zweck (2013) pp. 107–108

    Google Scholar 

  • C. Weißbäcker, H. Rose: Electrostatic correction of the chromatic and spherical aberration of charged particle lenses. In: Proc. 12th Eur. Congr. Electron Microsc., Vol. III, ed. by P. Tománek, R. Kolařík (Czechoslovak Society for Electron Microscopy, Brno 2000) pp.  I.157–I.158

    Google Scholar 

  • C. Weißbäcker, H. Rose: Electrostatic correction of the chromatic and the spherical aberration of charged-particle lenses I, J. Electron Microsc. 50, 383–390 (2001)

    Google Scholar 

  • C. Weißbäcker, H. Rose: Electrostatic correction of the chromatic and the spherical aberration of charged-particle lenses, II, J. Electron Microsc. 51, 45–51 (2002)

    Google Scholar 

  • D.J. Maas, A. Henstra, M.P.C.M. Krijn, S.A.M. Mentink: Electrostatic correction in LV-SEM, Microsc. Microanal. 6(Suppl. 2), 746–747 (2000)

    Google Scholar 

  • D.J. Maas, S. Henstra, M. Krijn, S. Mentink: Electrostatic aberration correction in low-voltage SEM, Proceedings SPIE 4510, 205–217 (2001)

    Google Scholar 

  • D. Maas, S. Mentink, A. Henstra: Electrostatic aberration correction in low-voltage SEM, Microsc. Microanal. 9(Suppl. 3), 24–25 (2003)

    Google Scholar 

  • A. Henstra, M.P.C.M. Krijn: An electrostatic achromat. In: Proc. 12th Eur. Congr. Electron Microsc., Vol. III, ed. by P. Tománek, R. Kolařík (Czechoslovak Society for Electron Microscopy, Brno 2000) pp.  I.155–I.156

    Google Scholar 

  • K. Bajo, S. Itose, M. Matsuya, M. Ishihara, K. Uchino, M. Kudo, I. Sakaguchi, H. Yurimoto: High spatial resolution imaging of helium isotope by TOF-SNMS, Surf. Interface Anal. 48, 1190–1193 (2016)

    CAS  Google Scholar 

  • M. Linck, P. Hartel, S. Uhlemann, F. Kahl, H. Müller, J. Zach, M. Haider, M. Niestadt, M. Bischoff, J. Biskupek, Z. Lee, T. Lehnert, F. Börr-nert, H. Rose, U. Kaiser: Chromatic aberration correction for atomic resolution TEM Imaging from 20 to 80 kV, Phys. Rev. Lett. 117, 076101 (2016)

    Google Scholar 

  • M. Linck, P. Hartel, S. Uhlemann, F. Kahl, H. Müller, J. Zach, J. Biskupek, M. Niestadt, U. Kaiser, M. Haider: Status of the SALVE-microscope: Cc-correction for atomic-resolution TEM imaging at 20 kV. In: Proc. 16th Eur. Microsc. Congr., Lyon, Vol. 1, ed. by D.J. Stokes, W.M. Rainforth (2016) pp. 314–315

    Google Scholar 

  • H. Rose, A. Nejati, H. Müller: Cc/Cs-corrector compensating for the chromatic aberration and the spherical aberration of electron lenses, Ultramicroscopy 203, 139–144 (2019)

    Google Scholar 

  • S.A.M. Mentink, T. Steffen, P.C. Tiemeijer, M.P.C.M. Krijn: Simplified aberration corrector for low-voltage SEM. In: Proc. EMAG 1999, ed. by C.J. Kiely (Institute of Physics Publishing, Bristol 1999) pp. 83–86

    Google Scholar 

  • T. Steffen, P.C. Tiemeijer, M.P.C.M. Krijn, S.A.M. Mentink: Correction of chromatic and spherical aberration using a Wien filter. In: Proc. 12th Eur. Congr. Electron Microsc, Vol. III, ed. by P. Tománek, R. Kolařík (Czechoslovak Society for Electron Microscopy, Brno 2000) pp. I.151–I.152

    Google Scholar 

  • G. Hottenroth: Über Elektronenspiegel, Z. Phys. 103, 460–462 (1936)

    CAS  Google Scholar 

  • G. Hottenroth: Untersuchungen über Elektronenspiegel, Ann. Phys. (Leipzig) 30, 689–712 (1937)

    CAS  Google Scholar 

  • A. Recknagel: Zur Theorie des Elektronenspiegels, Z. Phys. 104, 381–394 (1937)

    Google Scholar 

  • V.K. Zworykin, G.A. Morton, E.G. Ramberg, J. Hillier, A.W. Vance: Electron Optics and the Electron Microscope (Wiley, New York 1945)

    Google Scholar 

  • E.G. Ramberg: Aberration correction with an electron mirror, J. Appl. Phys. 20, 183–186 (1949)

    Google Scholar 

  • E. Kasper: Die Korrektur des Öffnungs- und Farbfehlers im Elektronenmikroskop durch Verwendung eines Elektronenspiegels mit überlagertem Magnetfeld, Optik 28, 54–64 (1968)

    Google Scholar 

  • D. Preikszas, H. Rose: Correction properties of electron mirrors, J. Electron Microsc. 46, 1–9 (1997)

    Google Scholar 

  • H. Rose, P. Hartel, D. Preikszas: Outline of the mirror corrector for SMART and PEEM3, Microsc. Microanal. 10(Suppl. 3), 28–29 (2004)

    Google Scholar 

  • Z. Shao, X.D. Wu: A study on hyperbolic mirrors as correctors, Optik 84, 51–54 (1990)

    Google Scholar 

  • G.F. Rempfer, D.M. Desloge, W.P. Skoczylas, O.H. Griffith: Simultaneous correction of spherical and chromatic aberrations with an electron mirror, Microsc. Microanal. 3, 14–27 (1997)

    CAS  Google Scholar 

  • Z. Shao, X.D. Wu: Adjustable four-electrode electron mirror as an aberration corrector, Appl. Phys. Lett. 55, 2696–2697 (1989)

    Google Scholar 

  • Z. Shao, X.D. Wu: Properties of a four-electrode adjustable electron mirror as an aberration corrector, Rev. Sci. Instrum. 61, 1230–1235 (1990)

    Google Scholar 

  • T. Schmidt, H. Marchetto, P.L. Lévesque, U. Groh, F. Maier, D. Preikszas, P. Hartel, R. Spehr, G. Lilienkamp, W. Engel, R. Fink, E. Bauer, H. Rose, E. Umbach, H.-J. Freund: Double aberration correction in a low-energy electron microscope, Ultramicroscopy 110, 1358–1361 (2010)

    CAS  Google Scholar 

  • M. Mankos, K. Shadman: A monochromatic, aberration-corrected, dual-beam low energy electron microscope, Ultramicroscopy 130, 13–28 (2013)

    CAS  Google Scholar 

  • H. Rose: Outline of an ultracorrector compensating for all primary chromatic and geometrical aberrations of charged-particle lenses, Microsc. Microanal. 9(Suppl. 3), 32–33 (2003)

    Google Scholar 

  • H. Rose: Outline of an ultracorrector compensating for all primary chromatic and geometrical aberrations of charged-particle lenses, Nucl. Instrum. Methods Phys. Res. A 519, 12–27 (2004)

    CAS  Google Scholar 

  • H. Rose: Prospects for aberration-free microscopy, Ultramicroscopy 103, 1–6 (2005)

    CAS  Google Scholar 

  • C. Kisielowski, B. Freitag, M. Bischoff, H. van Lin, S. Lazar, G. Krippels, P. Tiemeijer, M. van der Stam, S. von Harrach, M. Stekelenburg, M. Haider, S. Uhlemann, H. Müller, P. Hartel, B. Kabius, D. Miller, I. Petrov, E.A. Olson, T. Donchev, E.A. Kenik, A.R. Lupini, J. Bentley, S.J. Pennycook, I.M. Anderson, A.M. Minor, A.K. Schmid, T. Duden, V. Radmilovic, Q.M. Ramasse, M. Watanabe, R. Erni, E.A. Stach, P. Denes, U. Dahmen: Detection of single atoms and buried defects in three dimensions by aberration-corrected electron microscope with 0.5 Å information limit, Microsc. Microanal. 14, 469–477 (2008)

    CAS  Google Scholar 

  • U. Dahmen, R. Erni, V. Radmilovic, C. Kisielowski, M.-D. Rossell, P. Denes: Background, status and future of the transmission electron aberration-corrected microscope project, Philos. Trans. Royal Soc. A 367, 3795–3808 (2009)

    CAS  Google Scholar 

  • U. Kaiser, A. Chuvilin, J. Meyer, J. Biskupek: Microscopy at the bottom. In: Proc. Microsc. Conf. MC-2009, Vol. 3, ed. by W. Grogger, F. Hofer, P. Pölt (Verlag der Technischen Universität, Graz 2009) pp. 1–6

    Google Scholar 

  • U. Kaiser, J. Biskupek, J.C. Meyer, J. Leschner, L. Lechner, H. Rose, M. Stöger-Pollach, A.N. Khlobystov, P. Hartel, H. Müller, M. Haider, S. Eyhusen, G. Benner: Transmission electron microscopy at 20 kV for imaging and spectroscopy, Ultramicroscopy 111, 1239–1246 (2011)

    CAS  Google Scholar 

  • H. Rose, U. Kaiser: Prospects and first results of sub-angstroem low-voltage electron microscopy–the SALVE project, Recent Trends Charged Part. Opt. Surf. Phys. Instrum. 13, 65–66 (2012)

    Google Scholar 

  • H. Müller, M. Linck, P. Hartel, F. Kahl, J. Zach, S. Uhlemann, J. Biskupek, F. Börrnert, Z. Lee, M. Mohn, U. Kaiser, M. Haider: Correction of the chromatic and spherical aberration in low-voltage transmission electron microcopy, Recent Trends Charged Part. Opt. Surf. Phys. Instrum. 15, 38–39 (2016)

    Google Scholar 

  • U. Kaiser: Adv. Imaging Electron Phys (2019) in preparation

    Google Scholar 

  • Z. Shao: On the fifth order aberration in a sextupole corrected probe forming system, Rev. Sci. Instrum. 59, 2429–2437 (1988)

    Google Scholar 

  • H. Müller, S. Uhlemann, P. Hartel, M. Haider: Advancing the hexapole Cs—Corrector for the scanning transmission electron microscope, Microsc. Microanal. 12, 442–455 (2006)

    Google Scholar 

  • H. Rose, W. Pejas: Optimization of imaging magnetic filters free of second-order aberrations, Optik 54, 235–250 (1979)

    Google Scholar 

  • H. Shuman: Correction of the second-order aberrations of uniform field magnetic sectors, Ultramicroscopy 5, 45–53 (1980)

    CAS  Google Scholar 

  • O.L. Krivanek, P.R. Swann: An advanced electron energy loss spectrometer. In: Quantitative Microanalysis with High Spatial Resolution, ed. by G.W. Lorimer, M.H. Jacobs, P. Doig (Metals Society, London 1981) pp. 136–140

    Google Scholar 

  • H. Rose, D. Krahl: Electron optics of imaging energy filters. In: Energy-Filtering Transmission Electron Microscopy, ed. by L. Reimer (Springer, Berlin 1995) pp. 43–149

    Google Scholar 

  • R.F. Egerton: Electron Energy-Loss Spectroscopy in the Electron Microscope (Springer, Berlin-Heidelberg 2011)

    Google Scholar 

  • M. Haider: A corrected double-deflection electron spectrometer equipped with a parallel recording system, Ultramicroscopy 28, 190–200 (1989)

    CAS  Google Scholar 

  • O.L. Krivanek, C.C. Ahn, R.B. Keeney: Parallel detection electron spectrometer using quadrupole lenses, Ultramicroscopy 22, 103–115 (1987)

    CAS  Google Scholar 

  • O.L. Krivanek, A.J. Gubbens, N. Dellby: Developments in EELS instrumentation for spectroscopy and imaging, Microsc. Microanal. Microstruct. 2, 315–332 (1991)

    CAS  Google Scholar 

  • O.L. Krivanek, A.J. Gubbens, N. Dellby, C.E. Meyer: Design and first applications of a post-column imaging filter, Microsc. Microanal. Microstruct. 3, 187–199 (1992)

    Google Scholar 

  • A.J. Gubbens, H.A. Brink, M.K. Kundmann, S.L. Friedman, O.L. Krivanek: A post-column imaging energy filter with a 20482 pixel slow-scan CCD camera, Micron 29, 81–87 (1988)

    Google Scholar 

  • H.A. Brink, M.M.G. Barfels, R.P. Burgner, B.N. Edwards: A sub-50 meV spectrometer and energy filter for use in combination with 200 kV monochromated (S)TEMs, Ultramicroscopy 96, 367–384 (2003)

    CAS  Google Scholar 

  • A.J. Gubbens, M. Barfels, C. Trevor, R. Twesten, P. Mooney, P. Thomas, N. Menon, B. Kraus, C. Mao, B. McGinn: The GIF Quantum, a next generation post-column imaging energy filter, Ultramicroscopy 110, 962–970 (2010)

    CAS  Google Scholar 

  • N.E. Webster, M. Haider, H. Houf: Design and construction of a multipole element control unit, Rev. Sci. Instrum. 59, 999–1001 (1988)

    Google Scholar 

  • O.L. Krivanek, T.C. Lovejoy, N. Dellby, R.W. Carpenter: Monochromated STEM with a 30 meV-wide, atom-sized electron probe, Microscopy 62, 3–21 (2013)

    CAS  Google Scholar 

  • T.C. Lovejoy, G.C. Corbin, N. Dellby, M.V. Hoffman, O.L. Krivanek: Advances in ultra-high energy resolution STEM–EELS, Microsc. Microanal. 24(Suppl. 1), 446–447 (2018)

    Google Scholar 

  • O.L. Krivanek, G.C. Corbin, N. Dellby, M. Hoffman, T.C. Lovejoy: Monochromator and spectrometer design for ultra-high energy resolution EELS. In: Proc. 19th Int. Microsc. Congr., Sydney (2018) pp. 1530–1531

    Google Scholar 

  • O.L. Krivanek, N. Dellby, J.A. Hachtel, J.-C. Idrobo, M.T. Hotz, B. Plotkin-Swing, N.J. Bacon, A.L. Bleloch, G.J. Corbin, M.V. Hoffman, C.E. Meyer, T.C. Lovejoy: Progress in ultrahigh energy resolution EELS, Ultramicroscopy 203, 60–67 (2019)

    Google Scholar 

  • R. Castaing, L. Henry: Filtrage magnétique des vitesses en microscopie électronique, C. R. Acad. Sci. Paris B 255, 76–86 (1962)

    Google Scholar 

  • A.J.F. Metherell: Energy analyzing and energy selecting electron microscopes, Adv. Opt. Electron Microsc. 4, 263–360 (1971)

    Google Scholar 

  • A.J.F. Metherell: Energy analyzing and energy selecting electron microscopes, Adv. Imaging Electron Phys. 204, 147–230 (2017)

    Google Scholar 

  • S. Senoussi: Etude d'un Dispositif de Filtrage des Vitesses Purement Magnétique Adaptable à un Microscope Électronique à Très Haute Tension Thèse de 3e Cycle (Univ. Paris, Orsay 1971)

    Google Scholar 

  • S. Senoussi, L. Henry, R. Castaing: Etude d’un analyseur filtre de vitesses purement magnétique adaptable aux microscopes électroniques très haute tension, J. Microsc. (Paris) 11, 19 (1971)

    Google Scholar 

  • H. Rose, E. Plies: Entwurf eines fehlerarmen magnetischen Energie-Analysators, Optik 40, 336–341 (1974)

    Google Scholar 

  • G. Zanchi, J.-P. Perez, J. Sevely: Adaptation of a magnetic filtering device on a one megavolt electron microscope, Optik 43, 495–501 (1975)

    Google Scholar 

  • H. Rose: Aberration correction of homogeneous magnetic deflection systems, Optik 51, 15–38 (1978)

    Google Scholar 

  • S. Lanio, H. Rose, D. Krahl: Test and improved design of a corrected imaging magnetic energy filter, Optik 73, 56–68 (1986)

    Google Scholar 

  • S. Lanio: High-resolution imaging magnetic filters with simple structure, Optik 73, 99–107 (1986)

    Google Scholar 

  • S. Kujawa, D. Krahl: Comparison between A-type and B-type imaging Ω-filters. In: Proc. 14th Int. Congr. Electron Microsc., Cancún, Vol. 1, ed. by H.A. Calderón Benavides, M.J. Yacamán (Institute of Physics Publishing, Bristol 1998) pp. 241–242

    Google Scholar 

  • S. Uhlemann, H. Rose: The MANDOLINE filter—A new high-performance imaging filter for sub-eV EFTEM, Optik 96, 163–178 (1994)

    Google Scholar 

  • E. Essers, G. Benner, T. Mandler, S. Meyer, D. Mittmann, M. Schnell, R. Höschen: Energy resolution of an omega-type monochromator and imaging properties of the mandoline filter, Ultramicroscopy 110, 971–980 (2010)

    CAS  Google Scholar 

  • P.C. Tiemeijer, J.H.A. van Lin, B.H. Freitag, A.F. de Jong: Monochromized 200 kV (S)TEM, Microsc. Microanal. 8(Suppl. 2), 70–71 (2002)

    Google Scholar 

  • F. Kahl: Design eines Monochromators für Elektronenquellen, Ph.D. Thesis (Technical University of Darmstadt, Darmstadt 1999)

    Google Scholar 

  • O.L. Krivanek, J.P. Ursin, N.J. Bacon, G.J. Corbin, N. Dellby, P. Hrncirik, M.F. Murfitt, C.S. Own, Z.S. Szilagyi: High-energy-resolution monochromator for aberration-corrected scanning transmission electron microscopy/electron energy-loss spectroscopy, Philos. Trans. Royal Soc. A 367, 3683–3697 (2009)

    Google Scholar 

  • M. Mukai, E. Okunishi, M. Ashino, K. Omoto, T. Fukuda, A. Ikeda, K. Somehara, T. Kaneyama, T. Saitoh, T. Hirayama, T. Ikuhara: Development of a monochromator for aberration-corrected scanning transmission electron microscopy, Microscopy 64, 151–158 (2015)

    CAS  Google Scholar 

  • E. Plies: Proposal for an electrostatic energy filter and a monochromator. In: Proc. 9th Int. Congr. Electron Microsc., Toronto, Vol. 1, ed. by J.M. Sturgess (Microscopical Society of Canada, Toronto 1978) pp. 50–51

    Google Scholar 

  • A. Huber, J. Bärtle, E. Plies: Initial experiences with an electrostatic Ω-monochromator for electrons, Nucl. Instrum. Methods Phys. Res. A 519, 320–324 (2004)

    CAS  Google Scholar 

  • P.C. Tiemeijer: Operation modes of a TEM monochromator. In: Proc. EMAG 1999, ed. by C.J. Kiely (Institute of Physics Publishing, Bristol 1999) pp. 191–194

    Google Scholar 

  • P.C. Tiemeijer: Measurement of Coulomb interactions in an electron beam monochromator, Ultramicroscopy 78, 53–62 (1999)

    CAS  Google Scholar 

  • P.C. Tiemeijer, M. Bischoff, B. Freitag, C. Kisielowski: Using a monochromator to improve the resolution in TEM to below 0.5 Å. Part I: Creating highly coherent monochromated illumination, Ultramicroscopy 114, 72–81 (2012)

    CAS  Google Scholar 

  • P.C. Tiemeijer, M. Bischoff, B. Freitag, C. Kisielowski: Using a monochromator to improve the resolution in TEM to below 0.5 Å. Part II: Application to focal series reconstruction, Ultramicroscopy 118, 35–43 (2012)

    CAS  Google Scholar 

  • B. Freitag, P.C. Tiemeijer: Sub 30 meV energy resolution in the monochromated Themis transmission electron microscope. In: Proc. MC-2017, Lausanne (2017) p. 467

    Google Scholar 

  • H.W. Mook, P. Kruit: On the monochromatisation of high brightness sources for electron microscopy, Ultramicroscopy 78, 43–51 (1999)

    CAS  Google Scholar 

  • M. Mukai, J.S. Kim, K. Omoto, H. Sawada, A. Kimura, A. Ikeda, J. Zhou, T. Kaneyama, N.P. Young, J.H. Warner, P.D. Nellist, A.I. Kirkland: The development of a 200 kV monochromated field emission electron source, Ultramicroscopy 140, 37–43 (2018)

    Google Scholar 

  • M. Mukai, K. Omoto, T. Sasaki, Y. Kohno, S. Morishita, A. Kimura, A. Ikeda, K. Somehara, H. Sawada, K. Kimoto, K. Suenaga: Design of a monochromator for aberration-corrected low-voltage (S)TEM. In: Proc. 18th Int. Microsc. Conf., Prague (2014), IT-1-P-2578

    Google Scholar 

  • K. Kimoto: Practical aspects of monochromators developed for transmission electron microscopy, Microscopy 63, 337–344 (2014)

    CAS  Google Scholar 

  • M. Mankos, K. Shadman, V. Kolařík: Novel electron monochromator for high resolution imaging and spectrometry, J. Vac. Sci. Technol. B 34, 06KP01 (2016)

    Google Scholar 

  • H. Boersch, J. Geiger, W. Stickel: Das Auflösungsvermögen des elektrostatisch-magnetischen Energieanalysators für schnelle Elektronen, Z. Phys. 180, 415–424 (1964)

    Google Scholar 

  • J. Geiger: Inelastic electron scattering with energy losses in the meV-region, Proc. Annu. Meet. EMSA 39, 182–185 (1981)

    Google Scholar 

  • M. Terauchi, M. Tanaka, K. Tsuno, M. Ishida: Development of a high-energy resolution electron energy-loss spectroscopy microscope, J. Microsc. (Oxford) 194, 203–209 (1999)

    CAS  Google Scholar 

  • S. Uhlemann, H. Müller, P. Hartel, J. Zach, M. Haider: Thermal magnetic field noise limits resolution in transmission electron microscopy, Phys. Rev. Lett. 111, 046101 (2013)

    Google Scholar 

  • J. Johnson: Thermal agitation of electricity in conductors, Phys. Rev. 32, 97–109 (1928)

    CAS  Google Scholar 

  • H. Nyquist: Thermal agitation of electric charge in conductors, Phys. Rev. 32, 110–113 (1928)

    CAS  Google Scholar 

  • O.L. Krivanek, N. Dellby, R.J. Keyse, M.F. Murfitt, C.S. Own, Z.S. Szilagyi: Advances in aberration-corrected scanning transmission electron microscopy and electron energy-loss spectroscopy, Adv. Imaging Electron Phys. 153, 121–160 (2008)

    CAS  Google Scholar 

  • H. Sawada, T. Sasaki, F. Hosokawa, K. Suenaga: Atomic-resolution STEM imaging of graphene at low voltage of 30 kV with resolution enhancement by using large convergence angle, Phys. Rev. Lett. 114, 166102 (2015)

    CAS  Google Scholar 

  • J.M. Cowley: Image contrast in a scanning transmission electron microscope, Appl. Phys. Lett. 15, 58–59 (1969)

    Google Scholar 

  • E. Zeitler, M.G.R. Thomson: Scanning transmission electron microscopy, I, Optik 31, 258–280 (1970)

    Google Scholar 

  • E. Zeitler, M.G.R. Thomson: Scanning transmission electron microscopy, II, Optik 31, 359–366 (1970)

    Google Scholar 

  • F.F. Krause, A. Rosenauer: Reciprocity relations in transmission electron microscopy: A rigorous derivation, Micron 92, 1–5 (2017)

    Google Scholar 

  • H. Sawada, M. Watanabe, I. Chiyo: Ad hoc auto-tuning of aberrations using high-resolution STEM images by autocorrelation function, Microsc. Microanal. 18, 705–710 (2012)

    CAS  Google Scholar 

  • S. Lazar, P. Tiemeijer, S. Henstra, T. Dennemans, J. Ringnalda, B. Freitag: High performance in low voltage HR-STEM applications enabled by fast automatic tuning of the combination of a monochromator and probe Cs-corrector, Microsc. Microanal. 22(Suppl. 3), 980–981 (2016)

    Google Scholar 

  • R. Erni, M.D. Rossell, C. Kisielowski, U. Dahmen: Atomic-resolution imaging with a sub-50-pm electron probe, Phys. Rev. Lett. 102, 096101 (2009)

    Google Scholar 

  • S. Morishita, R. Ishikawa, Y. Kohno, H. Sawada, N. Shibata, Y. Ikuhara: Attainment of 40.5 pm spatial resolution using 300 kV scanning transmission electron microscope equipped with fifth-order aberration corrector, Microscopy 67, 46–50 (2018)

    CAS  Google Scholar 

  • O.L. Krivanek, M.F. Chisholm, V. Nicolosi, T.J. Pennycook, G.J. Corbin, N. Dellby, M.F. Murfitt, C.S. Own, Z.S. Szilagyi, M.P. Oxley, S.T. Pantelides, S.J. Pennycook: Atom-by-atom structural and chemical analysis by annular dark-field electron microscopy, Nature 464, 571–574 (2010)

    CAS  Google Scholar 

  • P.D. Nellist, S.J. Pennycook: Subångstrom resolution by underfocused incoherent transmission electron microscopy, Phys. Rev. Lett. 81, 4156–4159 (1998)

    CAS  Google Scholar 

  • B. Freitag, S. Kujawa, P.M. Mul, P.C. Tiemeijer, E. Snoeck: First experimental proof of spatial resolution improvement in a monochromized and Cs-corrected TEM. In: Proc. 8th Asia–Pac. Conf. Electron Microsc., Kanazawa, ed. by N. Tanaka, Y. Takano, H. Mori, H. Seguchi, S. Iseki, H. Shimada, E. Simamura (8APEM Publication Committee, Uchinada 2004) pp. 18–19

    Google Scholar 

  • B. Freitag, S. Kujawa, P.M. Mul, P.C. Tiemeijer: First experimental proof of spatial resolution improvement in a monochromized and Cs-corrected TEM, Microsc. Microanal. 10(Suppl. 3), 4–5 (2004)

    Google Scholar 

  • B. Freitag, S. Kujawa, P.M. Mul, J. Ringnalda, P.C. Tiemeijer: Breaking the spherical and chromatic aberration barrier in transmission electron microscopy, Ultramicroscopy 102, 209–214 (2005)

    CAS  Google Scholar 

  • A.L. Bleloch, N.J. Bacon, N. Dellby, T.C. Lovejoy, C. Shi, O.L. Krivanek: Overcoming the STEM chromatic aberration resolution limit by monochromatization. In: Proc. IMC19, Sydney (2018) pp. 948–949

    Google Scholar 

  • O.L. Krivanek, N. Dellby, M.F. Murfitt, M.F. Chisholm, T.J. Pennycook, K. Suenaga, V. Nicolosi: Gentle STEM: ADF imaging and EELS at low primary energies, Ultramicroscopy 110, 935–945 (2010)

    CAS  Google Scholar 

  • M. Sato: Resolution. In: Handbook of Charged Particle Optics, 2nd edn., ed. by J. Orloff (CRC, Boca Raton 2009) pp. 391–435

    Google Scholar 

  • P.D. Nellist: Scanning transmission electron microscopy. In: Science of Microscopy, Vol. 2007, ed. by P.W. Hawkes, J.C.H. Spence (Springer, Berlin-Heidelberg 2007) pp. 65–132

    Google Scholar 

  • O.L. Krivanek, G.J. Corbin, N. Dellby, B.F. Elston, R.J. Keyse, M.F. Murfitt, C.S. Own, Z.S. Szilagyi, J.W. Woodruff: An electron microscope for the aberration-corrected era, Ultramicroscopy 108, 179–195 (2008)

    CAS  Google Scholar 

  • O.L. Krivanek, T.C. Lovejoy, N. Dellby, T. Aoki, R.W. Carpenter, P. Rez, E. Soignard, J. Zhu, P.E. Batson, M. Lagos, R.F. Egerton, P.A. Crozier: Vibrational spectroscopy in the electron microscope, Nature 514, 209–212 (2014)

    CAS  Google Scholar 

  • T. Miyata, M. Fukuyama, A. Hibara, E. Okunishi, M. Mukai, T. Mizoguchi: Measurement of vibrational spectrum of liquid using monochromated scanning transmission electron microscopy–electron energy loss spectroscopy, Microscopy 63, 377–382 (2014)

    CAS  Google Scholar 

  • J.A. Hachtel, J. Huang, I. Popovs, S. Jansone-Popova, J.K. Keum, J. Jakowski, T.C. Lovejoy, N. Dellby, O.L. Krivanek, J.C. Idrobo: Identification of site-specific isotopic labels by vibrational spectroscopy in the electron microscope, Science 363, 525–528 (2019)

    Google Scholar 

  • P. Rez, T. Aoki, K. March, D. Gur, O.L. Krivanek, N. Dellby, T.C. Lovejoy, S.G. Wolf, H. Cohen: Damage-free vibrational spectroscopy of biological materials in the electron microscope, Nat. Commun. 7, 10945 (2016)

    CAS  Google Scholar 

  • J.R. Jokisaari, J. Hachtel, X. Hu, A. Mukherjee, C. Wang, A. Konecna, J. Aizpurua, T.C. Lovejoy, N. Dellby, O.L. Krivanek, J.-C. Idrobo, R.F. Klie: Vibrational spectroscopy of liquid water at high spatial resolution, Adv. Mater. 30, 1802702 (2018)

    Google Scholar 

  • J.M. Rodenburg: Ptychography and related diffractive imaging methods, Adv. Imaging Electron Phys. 150, 87–184 (2008)

    Google Scholar 

  • A.M. Maiden, J.M. Rodenburg: An improved ptychographical phase retrieval algorithm for diffractive imaging, Ultramicroscopy 109, 1256–1262 (2009)

    Google Scholar 

  • Y. Jiang, Z. Chen, Y. Han, P. Deb, H. Gao, S. Xie, P. Purohit, M.W. Tate, J. Park, S.M. Gruner, V. Elser, D.A. Muller: Electron ptychography of 2D materials to deep sub-ångström resolution, Nature 559, 343–349 (2018)

    Google Scholar 

  • C. Dwyer, T. Aoki, P. Rez, S.L.Y. Chang, T.C. Lovejoy, O.L. Krivanek: Electron-beam mapping of vibrational modes with nanometer spatial resolution, Phys. Rev. Lett. 117, 256101 (2016)

    CAS  Google Scholar 

  • F.S. Hage, D.M. Kepaptsoglou, Q.M. Ramasse, L.J. Allen: Phonon spectroscopy at atomic resolution, Phys. Rev. Lett. 122, 016103 (2019)

    Google Scholar 

  • K. Venkatraman, B.D.A. Levin, K. March, P. Rez, P.A. Crozier: Vibrational spectroscopy at atomic resolution with electron impact scattering, https://arxiv.org/abs/1812.08895 (2018)

  • R. Neutze, R. Wouts, D. van der Spoel, E. Weckert, J. Hadju: Potential for biomolecular imaging with femtosecond x-ray pulses, Nature 406, 752–757 (2000)

    CAS  Google Scholar 

  • H.N. Chapman, P. Fromme, A. Barty, et al.: Femtosecond x-ray protein nanocrystallography, Nature 470, 73–77 (2011)

    CAS  Google Scholar 

  • R.F. Egerton: Outrun radiation damage with electrons?, Adv. Struct. Chem. Imaging 1, 5–15 (2015)

    Google Scholar 

  • R.F. Egerton, R.K. Li, Y. Zhu: Diffract-before-destroy with electrons? In: Proc. 18th Int. Microsc. Conf., Prague, ed. by P. Hozak (2014), IT-8-O-1901

    Google Scholar 

  • J.C.H. Spence: Outrunning damage: Electrons vs. x-rays—Timescales and mechanisms, Struct. Dyn. 4, 044027 (2017)

    Google Scholar 

  • J.C.H. Spence, G. Subramanian, P. Musumeci: Hollow cone illumination for fast TEM, and outrunning damage with electrons, J. Phys. B 48, 214003 (2015)

    Google Scholar 

  • J.-M. Zuo, J. Tao: Scanning electron nanodiffraction and diffraction imaging. In: Scanning Transmission Electron Microscopy: Imaging and Analysis, ed. by S.J. Pennycook, P.D. Nellist (Springer, Berlin-Heidelberg 2011) pp. 393–427

    Google Scholar 

  • M.W. Tate, P. Purohit, D. Chamberlain, K.X. Nguyen, R. Hovden, C.S. Chang, P. Deb, E. Turgut, J.T. Heron, D.G. Schlom, D.C. Ralph, G.D. Fuchs, K.S. Shanks, H.T. Philipp, D.A. Muller, S.M. Gruner: High dynamic range pixel array detector for scanning transmission electron microscopy, Microsc. Microanal. 22, 237–249 (2016)

    CAS  Google Scholar 

  • M. Krajnak, D. McGrouther, D. Maneuski, V. O'Shea, S. McVitie: Pixelated detectors and improved efficiency for magnetic imaging in STEM differential phase contrast, Ultramicroscopy 165, 42–50 (2016)

    CAS  Google Scholar 

  • J.A. Mir, R. Clough, R. MacInnes, C. Gough, R. Plackett, I. Shipsey, H. Sawada, I. MacLaren, R. Ballabriga, D. Maneuski, V. O'Shea, D. McGrouther, A.I. Kirkland: Characterisation of the Medipix3 detector for 60 and 80 keV electrons, Ultramicroscopy 182, 44–53 (2017)

    CAS  Google Scholar 

  • F. Ernst, M. Rühle (Eds.): High-resolution Imaging and Spectrometry of Materials (Springer, Berlin 2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Appendix: Power Series Expansions of Electrostatic Potential and Vector Potential

Appendix: Power Series Expansions of Electrostatic Potential and Vector Potential

The power series expansions used in the foregoing text are identical with those adopted in [13.6] and are reproduced here for the reader’s convenience. However, since the work of Rose is very frequently referred to, the relation between the notation used in his book [13.13] and in his chapter in Ernst and Rühle [13.368] and that employed here is also given:

  1. 1.

    Expansions for the electrostatic potential

    In [13.6], the electrostatic potential is written

    $$\begin{aligned}\displaystyle\Phi(x,y,z)&\displaystyle=\phi(z)-\frac{1}{4}(x^{2}+y^{2})\phi^{\prime\prime}(z)\\ \displaystyle&\displaystyle\quad\,+\frac{1}{64}(x^{2}+y^{2})^{2}\phi^{\text{(iv)}}\\ \displaystyle&\displaystyle\quad\,-xF_{1}(z)-yF_{2}(z)+\frac{1}{8}(x^{2}+y^{2})\\ \displaystyle&\displaystyle\qquad\,\times(xF_{1}^{\prime\prime}+yF_{2}^{\prime\prime})\\ \displaystyle&\displaystyle\quad\,+\frac{1}{2}(x^{2}-y^{2})p_{2}(z)+xyq_{2}(z)\\ \displaystyle&\displaystyle\quad\,-\frac{1}{24}(x^{2}+y^{2})(x^{2}-y^{2})p_{2}^{\prime\prime}\\ \displaystyle&\displaystyle-\frac{1}{12}(x^{2}+y^{2})xyq_{2}^{\prime\prime}\\ \displaystyle&\displaystyle-\frac{1}{6}(x^{3}-3xy^{2})p_{3}(z)\\ \displaystyle&\displaystyle+\frac{1}{6}(y^{3}-3x^{2}y)q_{3}(z)\\ \displaystyle&\displaystyle+\frac{1}{24}(x^{4}-6x^{2}y^{2}+y^{4})p_{4}(z)\\ \displaystyle&\displaystyle+\frac{1}{6}(x^{2}-y^{2})xyq_{4}(z)\;.\end{aligned}$$

    Rose [13.13, 13.14] uses the expansion

    $$\begin{aligned}\displaystyle&\displaystyle\varphi(w,z)\\ \displaystyle&\displaystyle\;=\Re\sum_{m=0}^{\infty}\,\sum_{l=0}^{\infty}(-)^{l}\frac{m!}{l!(m+l)!}\left(\frac{w\overline{w}}{4}\right)^{l}\overline{w}^{m}\Phi_{m}^{[2l]}(z)\end{aligned}$$

    in which \(w=x+\mathrm{i}y\) and \([2l]\) signifies twofold differentiation with respect to \(z\). An overbar indicates complex conjugate.

    This leads to the following correspondences

    $$\begin{aligned}\displaystyle\phi(z)&\displaystyle=\Phi_{0}(z)\;,\\ \displaystyle F_{1}(z)&\displaystyle=-\Phi_{1}^{\text{(r)}}\;,\quad F_{2}(z)=-\Phi_{1}^{\text{(i)}}\;,\\ \displaystyle\Phi_{1}&\displaystyle=-(F_{1}+\mathrm{i}F_{2})\;,\\ \displaystyle p_{2}(z)&\displaystyle=2\Phi_{2}^{\text{(r)}}\;,\quad q_{2}(z)=2\Phi_{2}^{\text{(i)}}\;,\\ \displaystyle\Phi_{2}&\displaystyle=\frac{1}{2}(p_{2}+\mathrm{i}q_{2})\;,\\ \displaystyle p_{3}(z)&\displaystyle=-6\Phi_{3}^{\text{(r)}}\;,\quad q_{3}(z)=-6\Phi_{3}^{\text{(i)}}\;,\\ \displaystyle\Phi_{3}&\displaystyle=\frac{1}{6}(p_{3}+\mathrm{i}q_{3})\;,\\ \displaystyle p_{4}(z)&\displaystyle=24\Phi_{4}^{\text{(r)}}\;,\quad q_{4}(z)=24\Phi_{4}^{\text{(i)}},\\ \displaystyle\Phi_{4}&\displaystyle=\frac{1}{24}(p_{4}+\mathrm{i}q_{4})\end{aligned}$$

    and we have written

    $$\Phi_{m}=\Phi_{m}^{\text{(r)}}+\mathrm{i}\Phi_{m}^{\text{(i)}}\;.$$
  2. 2.

    Expansions for the vector potential

    In [13.6], the components of the vector potential are written

    $$\begin{aligned}\displaystyle A_{x}&\displaystyle=-\frac{y}{2}\left(B-\frac{1}{8}(x^{2}+y^{2})B^{\prime\prime}\right)\\ \displaystyle&\displaystyle\quad+\frac{1}{4}(x^{2}-y^{2})B_{2}^{\prime}-\frac{1}{48}(x^{2}-y^{2})(x^{2}+y^{2})B_{2}^{\prime\prime\prime}\\ \displaystyle&\displaystyle\quad-\frac{1}{2}xyB_{1}^{\prime}+\frac{1}{24}xy(x^{2}+y^{2})B_{1}^{\prime\prime\prime}\\ \displaystyle&\displaystyle\quad-\frac{1}{12}(x^{3}-3xy^{2})Q_{2}^{\prime}-\frac{1}{12}(y^{3}-3x^{2}y)P_{2}^{\prime}\\ \displaystyle&\displaystyle\quad+\frac{1}{48}(x^{4}-6x^{2}y^{2}+y^{4})Q_{3}^{\prime}-\frac{1}{12}(x^{2}-y^{2})xyP_{3}^{\prime}\;,\\ \displaystyle A_{y}&\displaystyle=\frac{x}{2}\left(B-\frac{1}{8}(x^{2}+y^{2})B^{\prime\prime}\right)\\ \displaystyle&\displaystyle\quad+\frac{1}{4}(x^{2}-y^{2})B_{1}^{\prime}-\frac{1}{48}(x^{2}-y^{2})(x^{2}+y^{2})B_{1}^{\prime\prime\prime}\\ \displaystyle&\displaystyle\quad+\frac{1}{2}xyB_{2}^{\prime}-\frac{1}{24}xy(x^{2}+y^{2})B_{2}^{\prime\prime\prime}\\ \displaystyle&\displaystyle\quad-\frac{1}{12}(x^{3}-3xy^{2})P_{2}^{\prime}+\frac{1}{12}(y^{3}-3x^{2}y)Q_{2}^{\prime}\\ \displaystyle&\displaystyle\quad+\frac{1}{48}(x^{4}-6x^{2}y^{2}+y^{4})P_{3}^{\prime}+\frac{1}{12}(x^{2}-y^{2})xyQ_{3}^{\prime}\;,\\ \displaystyle A_{z}&\displaystyle=-xB_{2}(z)_{1}-yB_{1}(z)+\frac{1}{8}(x^{2}+y^{2})\\ \displaystyle&\displaystyle\qquad\,\times(xB_{2}^{\prime\prime}-yB_{1}^{\prime\prime})\\ \displaystyle&\displaystyle\quad+\frac{1}{2}(x^{2}-y^{2})Q_{2}(z)-xyP_{2}(z)-\frac{1}{24}(x^{2}+y^{2})\\ \displaystyle&\displaystyle\qquad\,\times(x^{2}-y^{2})Q_{2}^{\prime\prime}+\frac{1}{12}(x^{2}+y^{2})xyP_{2}^{\prime\prime}\\ \displaystyle&\displaystyle\quad-\frac{1}{6}(x^{3}-3xy^{2})Q_{3}(z)-\frac{1}{6}(y^{3}-3x^{2}y)P_{3}(z)\\ \displaystyle&\displaystyle\quad+\frac{1}{24}(x^{4}-6x^{2}y^{2}+y^{4})Q_{4}(z)-\frac{1}{6}(x^{2}-y^{2})\\ \displaystyle&\displaystyle\qquad\,\times xyP_{4}(z)\;.\end{aligned}$$

    In Rose [13.13, 13.14], the same gauge is adopted, and the components of the vector potential are given by

    $$\begin{aligned}\displaystyle&\displaystyle\begin{aligned}\displaystyle A=A_{x}+\mathrm{i}A_{y}&\displaystyle=\sum_{m=0}^{\infty}\,\sum_{l=0}^{\infty}\frac{(-)^{l}}{2\mathrm{i}}\frac{m!}{l!(m+1+l)!}\\ \displaystyle&\displaystyle\quad\times\left(\frac{w\overline{w}}{4}\right)^{l}w^{m+1}\bar{\Psi}_{m}^{[2l+1]}(z)\;,\end{aligned}\\ \displaystyle&\displaystyle\begin{aligned}\displaystyle A_{z}&\displaystyle=\Im\sum_{m=0}^{\infty}\,\sum_{l=0}^{\infty}(-)^{l}\frac{m!}{\!(m+l)!}\\ \displaystyle&\displaystyle\quad\times\left(\frac{w\overline{w}}{4}\right)^{l}\overline{w}^{m}\Psi_{m}^{[2l]}(z)\;.\end{aligned}\end{aligned}$$

    The correspondence is now

    $$\begin{aligned}\displaystyle\Psi_{1}&\displaystyle=-(B_{1}+\mathrm{i}B_{2})\;,\\ \displaystyle\Psi_{2}&\displaystyle=\frac{1}{2}(P_{2}+\mathrm{i}Q_{2})\;,\\ \displaystyle\Psi_{3}&\displaystyle=-\frac{1}{6}(P_{3}+\mathrm{i}Q_{3})\;,\\ \displaystyle\Psi_{4}&\displaystyle=\frac{1}{24}(P_{4}+\mathrm{i}Q_{4})\;.\end{aligned}$$

Higher-order terms in the expansions are given in Hawkes and Kasper [13.6], and the correspondences can be obtained straightforwardly.

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hawkes, P.W., Krivanek, O.L. (2019). Aberration Correctors, Monochromators, Spectrometers. In: Hawkes, P.W., Spence, J.C.H. (eds) Springer Handbook of Microscopy. Springer Handbooks. Springer, Cham. https://doi.org/10.1007/978-3-030-00069-1_13

Download citation

Publish with us

Policies and ethics