Skip to main content

An Object Oriented Approach to Multimodal Imaging Data in Neuroscience

  • Conference paper
  • First Online:
Studies in Neural Data Science (START UP RESEARCH 2017)

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 257))

Included in the following conference series:

  • 620 Accesses

Abstract

We propose a methodological framework for exploring complex multimodal imaging data from a neuroscience study with the aim of identifying a data-driven group structure in the patients sample, possibly connected with the presence/absence of lifetime mental disorder. The functional covariances of fMRI signals are first considered as data objects. Appropriate clustering procedures and low dimensional representations are proposed. For inference, a Frechet estimator of both the covariance operator itself and the average covariance operator is used. A permutation procedure to test the equality of the covariance operators between two groups is also considered. We finally propose a method to incorporate spatial dependencies between different brain regions, merging the information from both the Structural Networks and the Dynamic functional activity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Amari, S.I.: Differential-geometrical methods in statistics. Lecture Notes in Statistics, vol. 28. Springer, New York (1985)

    Book  Google Scholar 

  2. Bosq, D.: Linear Processes in Function Spaces. Lecture Notes in Statistics. Springer, New York (2000)

    Chapter  Google Scholar 

  3. Canale, A., Durante, D., Paci, L., Scarpa, B.: Connecting statistical brains. Significance 15(1), 38–40 (2018)

    Article  Google Scholar 

  4. Cole, D.M., Smith, S.M., Beckmann, C.F.: Advances and pitfalls in the analysis and interpretation of resting-state FMRI data. Front. Syst. Neurosci. 4, 8 (2010)

    Google Scholar 

  5. Desikan, R.S., Ségonne, F., Fischl, B., Quinn, B.T., Dickerson, B.C., Blacker, D., Buckner, R.L., Dale, A.M., Maguire, R.P., Hyman, B.T., Albert, M.S., Killiany, R.J.: An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. NeuroImage 31(3), 968–980 (2006)

    Article  Google Scholar 

  6. Dryden, I.L., Koloydenko, A., Zhou, D.: Non-Euclidean statistics for covariance matrices, with applications to diffusion tensor imaging. Ann. Appl. Stat. 3(3), 1102–1123 (2009)

    Article  MathSciNet  Google Scholar 

  7. Friendly, M., Monette, G., Fox, J.: Elliptical insights: understanding statistical methods through elliptical geometry. Stat. Sci. 28(1), 1–39 (2013)

    Article  MathSciNet  Google Scholar 

  8. Heuvel, M.P.V.D., Pol, H.E.H.: Exploring the brain network: a review on resting-state fMRI functional connectivity. Eur. Neuropsychopharmacol. 20(8), 519–534 (2010)

    Article  Google Scholar 

  9. Horváth, L., Kokoszka, P.: Inference for Functional Data with Applications. Springer Series in Statistics. Springer, New York (2012)

    Book  Google Scholar 

  10. Hsing, T., Eubank, R.: Theoretical Foundations of Functional Data Analysis, with an Introduction to Linear Operators. Wiley Series in Probability and Statistics. Wiley, Chichester, UK (2015)

    Google Scholar 

  11. Huckemann, S.: Intrinsic inference on the mean geodesic of planar shapes and tree discrimination by leaf growth. Ann. Stat. 39(2), 1098–1124 (2010)

    Article  MathSciNet  Google Scholar 

  12. Jolliffe, I.T.: Principal Component Analysis and Factor Analysis, pp. 115–128. Springer, New York (1986)

    Chapter  Google Scholar 

  13. Mallat, S.: A Wavelet Tour of Signal Processing. Academic Press (1999)

    Google Scholar 

  14. Marron, J.S., Alonso, A.M.: Overview of object oriented data analysis. Biom. J. 56(5), 732–753 (2014)

    Article  MathSciNet  Google Scholar 

  15. Murtagh, F., Legendre, P.: Ward’s hierarchical clustering method: clustering criterion and agglomerative algorithm. J. Classif. 31(3), 274–295 (2011)

    Article  Google Scholar 

  16. Pesarin, F., Salmaso, L.: Permutation Tests for Complex Data: Theory, Applications and Software. Wiley (2010)

    Google Scholar 

  17. Pigoli, D., Aston, J.A.D., Dryden, I.L., Secchi, P.: Distances and inference for covariance operators. Biometrika 101(2), 409–422 (2014)

    Article  MathSciNet  Google Scholar 

  18. Plis, S., Meinecke, F.C., Eichele, T.: Analysis of multimodal neuroimaging data. IEEE Rev. Biomed. Eng. 4, 26–58 (2011)

    Article  Google Scholar 

  19. Ramsay, J., Silverman, B.W.: Functional Data Analysis. Springer Series in Statistics. Springer, New York (2005)

    Google Scholar 

  20. Roalf, D., Gur, R.: Functional brain imaging in neuropsychology over the past 25 years. Neuropsychology 31(8), 954–971 (2017)

    Article  Google Scholar 

  21. Roweis, S.T., Saul, L.K.: Nonlinear dimensionality reduction by locally linear embedding. Science 290(5500), 2323–2326 (2000)

    Article  Google Scholar 

  22. Schur, J.: Bemerkungen zur Theorie der beschränkten Bilinearformen mit unendlich vielen Veränderlichen. J. Reine Angew. Math. 140, 1–28 (1911)

    MathSciNet  MATH  Google Scholar 

  23. Secchi, P., Vantini, S., Zanini, P.: Hierarchical independent component analysis: a multi-resolution non-orthogonal data-driven basis. Comput. Stat. Data Anal. 95, 133–149 (2016)

    Article  MathSciNet  Google Scholar 

  24. Wang, H., Marron, J.S.: Object oriented data analysis: sets of trees. Ann. Stat. 35(5), 1849–1873 (2007)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We acknowledge Greg Kiar and Eric Bridgeford from NeuroData at Johns Hopkins University, who pre-processed the raw DTI and R-fMRI imaging data available at http://fcon_1000.projects.nitrc.org/indi/CoRR/html/nki_1.html. We would like to deeply thank the StartUp Research Scientific Committee for efficiently and flawlessly organizing such a motivating experience. We thank Professor Francesca Greselin and Doctor Mauro Ceroni for their support and help throughout the drafting of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Federico Ferraccioli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cappozzo, A., Ferraccioli, F., Stefanucci, M., Secchi, P. (2018). An Object Oriented Approach to Multimodal Imaging Data in Neuroscience. In: Canale, A., Durante, D., Paci, L., Scarpa, B. (eds) Studies in Neural Data Science. START UP RESEARCH 2017. Springer Proceedings in Mathematics & Statistics, vol 257. Springer, Cham. https://doi.org/10.1007/978-3-030-00039-4_4

Download citation

Publish with us

Policies and ethics