Skip to main content

Hierarchical Graphical Model for Learning Functional Network Determinants

  • Conference paper
  • First Online:
Studies in Neural Data Science (START UP RESEARCH 2017)

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 257))

Included in the following conference series:

  • 660 Accesses

Abstract

Analysis of brain functionality is a stimulating research topic from both a neuroscientific and statistical perspective. Although several works have improved our comprehension of the relationship between subject-specific information and brain architecture, many questions remain open. The aim of this paper is to relate functional connectivity patterns with subject-specific features and brain constraints, such as age and mental illness of the subject and lobes membership for brain regions, and illustrate whether these phenotypes affect the neurophysiological dynamics. To address such goal we consider a modular approach that allows to remove noise from the fMRI data, estimate the functional dependency structure and relate functional architecture with structural and phenotypical information.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Achard, S., Salvador, R., Whitcher, B., Suckling, J., Bullmore, E.: A resilient, low-frequency, small-world human brain functional network with highly connected association cortical hubs. J. Neurosci. 26(1), 63–72 (2006)

    Article  Google Scholar 

  2. Alakörkkö, T., Saarimäki, H., Glerean, E., Saramäki, J., Korhonen, O.: Effects of spatial smoothing on functional brain networks. Eur. J. Neurosci. 46(9), 2471–2480 (2017)

    Article  Google Scholar 

  3. Andersen, A.H., Gash, D.M., Avison, M.J.: Principal component analysis of the dynamic response measured by fMRI a generalized linear systems framework. Magn. Reson. Imaging 17(6), 795–815 (1999)

    Article  Google Scholar 

  4. Ashby, F.G.: Statistical Analysis of fMRI Data. MIT Press (2011)

    Google Scholar 

  5. Beckmann, C.F., Smith, S.M.: Tensorial extensions of independent component analysis for multisubject fMRI analysis. Neuroimage 25(1), 294–311 (2005)

    Article  Google Scholar 

  6. Bennett, J., Wakefield, J.: Errors-in-variables in joint population pharmacokinetic/pharmacodynamic modeling. Biometrics 57(3), 803–812 (2001)

    Article  MathSciNet  Google Scholar 

  7. Brett, M., Anton, J.L., Valabregue, R., Poline, J.B.: Region of interest analysis using the MarsBar toolbox for SPM 99. Neuroimage 16(2), S497 (2002)

    Google Scholar 

  8. Bright, M.G., Murphy, K.: Is fMRI “noise” really noise? Resting state nuisance regressors remove variance with network structure. NeuroImage 114, 158–169 (2015)

    Article  Google Scholar 

  9. Bufkin, J.L., Luttrell, V.R.: Neuroimaging studies of aggressive and violent behavior current findings and implications for criminology and criminal justice. Trauma Violence Abuse 6(2), 176–191 (2005)

    Article  Google Scholar 

  10. Bullmore, E., Sporns, O.: Complex brain networks graph theoretical analysis of structural and functional systems. Nature Rev. Neurosci. 10(3), 186–198 (2009)

    Article  Google Scholar 

  11. Cai, T., Liu, W., Luo, X.: A constrained \(\ell _1\) minimization approach to sparse precision matrix estimation. J. Am. Statist. Assoc. 106(494), 594–607 (2011)

    Article  Google Scholar 

  12. Calhoun, V.D., Adali, T., McGinty, V., Pekar, J.J., Watson, T., Pearlson, G.: FMRI activation in a visual-perception task network of areas detected using the general linear model and independent components analysis. NeuroImage 14(5), 1080–1088 (2001)

    Article  Google Scholar 

  13. Carew, J.D., Wahba, G., Xie, X., Nordheim, E.V., Meyerand, M.E.: Optimal spline smoothing of fMRI time series by generalized cross-validation. NeuroImage 18(4), 950–961 (2003)

    Article  Google Scholar 

  14. Craddock, R.C., Jbabdi, S., Yan, C.G., Vogelstein, J.T., Castellanos, F.X., Di Martino, A., Kelly, C., Heberlein, K., Colcombe, S., Milham, M.P.: Imaging human connectomes at the macroscale. Nature Methods 10(6), 524–539 (2013)

    Article  Google Scholar 

  15. Desikan, R.S., Ségonne, F., Fischl, B., Quinn, B.T., Dickerson, B.C., Blacker, D., Buckner, R.L., Dale, A.M., Maguire, R.P., Hyman, B.T.: An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. Neuroimage 31, 968–980 (2006)

    Article  Google Scholar 

  16. Fan, J., Yao, Q.: Nonlinear Time Series Nonparametric and Parametric Methods. Springer Science & Business Media (2008)

    Google Scholar 

  17. Friedman, J., Hastie, T., Hfling, H., Tibshirani, R.: Pathwise coordinate optimization. Ann. Appl. Statist. 1(2), 302–332 (2007)

    Article  MathSciNet  Google Scholar 

  18. Friedman, J., Hastie, T., Tibshirani, R.: Sparse inverse covariance estimation with the graphical lasso. Biostatistics 9(3), 432–441 (2008)

    Article  Google Scholar 

  19. Genovese, C.R., Lazar, N.A., Nichols, T.: Thresholding of statistical maps in functional neuroimaging using the false discovery rate. Neuroimage 15(4), 870–878 (2002)

    Article  Google Scholar 

  20. Gong, G., He, Y., Evans, A.C.: Brain connectivity gender makes a difference. Neuroscientist 17(5), 575–591 (2011)

    Article  Google Scholar 

  21. Hoff, P., Raftery, A., Handcock, M.: Latent space approaches to social network analysis. J. Am. Statist. Assoc. 97(460), 1091–1098 (2002)

    Article  MathSciNet  Google Scholar 

  22. Hoff, P.D.: Multilinear tensor regression for longitudinal relational data. J. Am. Statist. Assoc. 9(3), 1169–1193 (2015)

    MathSciNet  MATH  Google Scholar 

  23. Hunter, D.R., Handcock, M.S., Butts, C.T., Goodreau, S.M., Morris, M.: ergm A package to fit, simulate and diagnose exponential-family models for networks. J. Statist. Softw. 24(3), nihpa 54860 (2008)

    Google Scholar 

  24. Kiar, G., Roncal, W., Mhembere, D., Bridgeford, E., Burns, R., Vogelstein, J.T.: ndmg Neurodatas MRI graphs pipeline (2016). https://doi.org/10.5281/zenodo.60206

  25. Lee, M.H., Smyser, C.D., Shimony, J.S.: Resting-state fMRI a review of methods and clinical applications. Am. J. Neuroradiol. 34(10), 1866–1872 (2013). methods

    Article  Google Scholar 

  26. Li, H., Loken, E.: A unified theory of statistical analysis and inference for variance component models for dyadic data. Statist. Sin. 12, 519–535 (2002)

    MathSciNet  MATH  Google Scholar 

  27. Lipsey, M.W., Wilson, D.B.: Practical Meta-Analysis. Sage Publications, Inc. (2001)

    Google Scholar 

  28. Liu, F., Bayarri, M., Berger, J.: Modularization in Bayesian analysis, with emphasis on analysis of computer models. Bayesian Anal. 4(1), 119–150 (2009)

    Article  MathSciNet  Google Scholar 

  29. Mehta, P.H., Beer, J.: Neural mechanisms of the testosterone-aggression relation the role of orbitofrontal cortex. J. Cognit. Neurosci. 22(10), 2357–2368 (2010)

    Article  Google Scholar 

  30. Murphy, K.M., Topel, R.H.: Estimation and inference in two-step econometric models. J. Bus. Econ. Statist. 20(1), 88–97 (2002)

    Article  MathSciNet  Google Scholar 

  31. Rosenbaum, P.R., Rubin, D.B.: The central role of the propensity score in observational studies for causal effects. Biometrika 70(1), 41–55 (1983)

    Article  MathSciNet  Google Scholar 

  32. Smith, S.M., Jenkinson, M., Johansen-Berg, H., Rueckert, D., Nichols, T.E., Mackay, C.E., Watkins, K.E., Ciccarelli, O., Cader, M.Z., Matthews, P.M., Behrens, T.E.: Tract-based spatial statistics voxelwise analysis of multi-subject diffusion data. Neuroimage 31(4), 1487–1505 (2006)

    Article  Google Scholar 

  33. Stam, C.: Modern network science of neurological disorders. Nature Rev. Neurosci. 15, 683–695 (2014)

    Article  Google Scholar 

  34. Zhao, T., Liu, H., Roeder, K., Lafferty, J., Wasserman, L.: The huge package for high-dimensional undirected graph estimation in R. J. Mach. Learn. Res. 13, 1059–1062 (2012)

    Google Scholar 

Download references

Acknowledgements

The authors are grateful to the organizing committee of StartUp Research Lucia Paci, Antonio Canale, Daniele Durante and Bruno Scarpa for giving them the opportunity to take on such an inspiring challenge in a stimulating environment. The authors also wish to thank Greg Kiar and Eric Bridgeford from NeuroData at Johns Hopkins University, for pre-processing and providing the raw DTI and R-fMRI, and the the other participants to Start-Up Research for prolific discussions, both during and after the meeting.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tullia Padellini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Aliverti, E., Forastiere, L., Padellini, T., Paganin, S., Wit, E. (2018). Hierarchical Graphical Model for Learning Functional Network Determinants. In: Canale, A., Durante, D., Paci, L., Scarpa, B. (eds) Studies in Neural Data Science. START UP RESEARCH 2017. Springer Proceedings in Mathematics & Statistics, vol 257. Springer, Cham. https://doi.org/10.1007/978-3-030-00039-4_2

Download citation

Publish with us

Policies and ethics