Skip to main content

Learning Mutation Strategies for Evolution and Adaptation of a Simulated Snakebot

  • Chapter
  • First Online:
Advances in Applied Self-organizing Systems

Part of the book series: Advanced Information and Knowledge Processing ((AI&KP))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Andrusenko Y. (2001). Russian Culture Navigator: Miturich-Khlebnikovs: Art Trade Runs in the Family, available at: http://www.vor.ru/culture/cultarch191_eng.html.

    Google Scholar 

  • Angeline, P. J. (1994). Genetic programming and emergent intelligence. In Kinnear, K.E. Jr., editor, Advances in Genetic Programming, pages 75–98, MIT Press, Cambridge, MA.

    Google Scholar 

  • Antonisse, J. (1991). A grammar-based genetic algorithm. In G.J.E. Rawlins, editor, Foundations of the Genetic Algorithm Workshop (FOGA), pages 193–204. Bloomington USA Morgan Kaufmann, CA.

    Google Scholar 

  • Bongard, J.C., and Lipson H. (2004). Automated damage diagnosis and recovery for remote robotics. In IEEE Proceedings of the 2004 International Conference on Robotics and Automation (ICRA 2004), pages 3545–3550. IEEE, New York.

    Google Scholar 

  • Bosman, P., and de Jong, E. (2004). Learning probabilistic tree grammars for genetic programming. In Proceedings of the 8th International Conference on Parallel Problem Solving from Nature PPSN-04, pages 192–201. Birmingham, UK; Springer.

    Google Scholar 

  • Bray, T., Paoli, J., Sperberg-McQueen, C. M., and Maler, E. (2000). Extensible Markup Language (XML) 1.0, Second Edition, W3C Recommendation, available at http://www.w3.org/TR/REC-xml/

    Google Scholar 

  • Caporale, L. H. (2003). Darwin in the Genome: Molecular Strategies in Biological Evolution. McGraw-Hill/Contemporary Books, New York.

    Google Scholar 

  • Dowling, K. (1997). Limbless Locomotion: Learning to Crawl with a Snake Robot. Doctoral dissertation, Technical Report CMU-RI-TR-97-48. Robotics Institute, Carnegie Mellon University, Pittsburgh, PA.

    Google Scholar 

  • Goldberg, D. E. (1989). Genetic Algorithms in Search, Optimization, and Machine Learning. Addision-Wesley,

    Google Scholar 

  • Hirose, S. (1993). Biologically Inspired Robots: Snake-like Locomotors and Manipulators. Oxford University Press. Oxford.

    Google Scholar 

  • Kamio, S., Mitsuhashi, H., and Iba, H. (2003). Integration of genetic programming and reinforcement learning for real robots. In E. Cantù-Paz, J. A. Foster, K. Deb, L. Davis, R. Roy, U.-M. O’Reilly, H.-G. Beyer, R. K. Standish, G. Kendall, S. W. Wilson, M. Harman, J. Wegener, D. Dasgupta, M. A. Potter, A. C. Schultz, K. A. Dowsland, N. Jonoska, J. F. Miller, editors, Proceedings of the Genetic and Evolutionary Computations Conference (GECCO 2003), pages 470–482, Springer, Berlin.

    Google Scholar 

  • Kimura, H., Yamashita, T., and Kobayashi, S. (2001). Reinforcement learning of walking behavior for a four-legged robot. In Proceedings of 40th IEEE Conference on Decision and Control, Orlando, FL, pages 411–416.

    Google Scholar 

  • Kirschner, M.W. and Gerhart, J.C. (2005). The Plausibility of Life: Resolving Darwin’s Dilemma. Yale University Press, New Haven, CT.

    Google Scholar 

  • Koza, J. R. (1992). Genetic Programming: On the Programming of Computers by Means of Natural Selection. MIT Press, Cambridge, MA.

    MATH  Google Scholar 

  • Ito, K., Kamegawa, K. and Matsuno, F. (2003). Extended QDSEGA for controlling real robots—acquisition of locomotion patterns for snake-like robot. In IEEE Proceedings of IEEE International Conference on Robotics and Automation (ICRA 2003), pages 791–796. IEEE, New York.

    Google Scholar 

  • Levitan, I. B., and Kaczmarek, L. K. (2002). The Neuron: Cell and Molecular Biology. Oxford University Press, New York

    Google Scholar 

  • Mahdavi, S., and Bentley, P.J. (2003). Evolving motion of robots with muscles. In Proceedings of EvoROB2003, the 2nd European Workshop on Evolutionary Robotic (EuroGP 2003), pages 655–664. Essex, UK.

    Google Scholar 

  • O’Neill, M. and Ryan, C. (2003). Grammatical Evolution: Evolutionary Automatic Programming in an Arbitrary Language, Kluwer, Norwell, USA.

    Book  Google Scholar 

  • Pelikan M., Goldberg D. E., and Cantù-Paz, E. (1999). BOA: The Bayesian optimization algorithm. In Proceedings of the Genetic and Evolutionary Computation Conference (GECCO-99), Orlando, USA pages 525–532.

    Google Scholar 

  • Prokopenko, M., Gerasimov, V., and Tanev, I. (2006). Evolving spatiotemporal coordination in a modular robotic system. In Nolfi, S., Baldassarre, G., Calabretta, R., Hallam, J. C. T., Marocco, D., Meyer, J.-A., Miglino, O., and Parisi, D., editors, From Animals to Animats 9: 9th International Conference on the Simulation of Adaptive Behavior (SAB 2006), Rome, Italy, September 25–29 2006, volume 4095 of Lecture Notes in Computer Science, pages 558–569. Springer.

    Google Scholar 

  • Salustowicz, R. and Schmidhuber, J. (1997). Probabilistic incremental program evolution. Evolutionary Computation, MIT Press, 5(2):123–141.

    Article  Google Scholar 

  • Shan Y., McKay, R.I, and Baxter R. (2004). Grammar model-based program evolution. In Proceedings of the 2004 IEEE Congress on Evolutionary Computation, 20-23 June, Portland, Oregon, pages 478–485.

    Google Scholar 

  • Smith, R. (2006). Open Dynamics Engine, available at http://q12.org/od

    Google Scholar 

  • Takamura, S., Hornby, G. S., Yamamoto, T., Yokono, J. and Fujita, M. (2000). Evolution of dynamic gaits for a robot. In Proceedings of the IEEE International Conference on Consumer Electronics, pages 192–193, Los Angeles.

    Google Scholar 

  • Tanev, I., and Ray, T. (2005). Evolution of sidewinding locomotion of simulated limbless, wheelless robots. Artificial Life and Robotics, 9:117–122, Springer, Tokyo.

    Article  Google Scholar 

  • Tanev, I., Ray, T., and Buller, A. (2005). Automated evolutionary design, robustness and adaptation of sidewinding locomotion of simulated snake-like robot, IEEE Transactions on Robotics, 21:632–645.

    Article  Google Scholar 

  • Tanev, I. (2006). Interactive learning of mutation strategies in genetic programming. In Proceedings of the 5th Joint Symposium between Chonnam National University and Doshisha University, Chonnam University, Kwangju, Korea, pages 83–87. Chonnam Univ. Press.

    Google Scholar 

  • Wong, M. L. (2005). Evolving recursive programs by using adaptive grammar based genetic programming, Genetic Programming and Evolvable Machines, 6:421–455.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag London Limited

About this chapter

Cite this chapter

Tanev, I. (2008). Learning Mutation Strategies for Evolution and Adaptation of a Simulated Snakebot. In: Prokopenko, M. (eds) Advances in Applied Self-organizing Systems. Advanced Information and Knowledge Processing. Springer, London. https://doi.org/10.1007/978-1-84628-982-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-84628-982-8_6

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84628-981-1

  • Online ISBN: 978-1-84628-982-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics