Skip to main content

Machine Learning and Artificial Intelligence in Cardiovascular Imaging

  • Chapter
  • First Online:
Book cover CT of the Heart

Abstract

Cardiovascular imaging is playing an increasingly important role in the management of cardiovascular disease. As new imaging technologies are constantly being introduced, this has only been bolstered. Computer systems have always provided assistance to radiologists in their clinical routine, but recent advancements in computational power and the improvement in machine learning algorithms have introduced new possibilities and applications for these systems. In this chapter, a brief overview of machine learning and artificial intelligence will be presented, discussing its applications in medicine and radiology, with a special focus on cardiovascular imaging applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Erickson BJ, Korfiatis P, Akkus Z, Kline TL. Machine learning for medical imaging. Radiographics. 2017;37(2):505–15. https://doi.org/10.1148/rg.2017160130.

    Article  PubMed  Google Scholar 

  2. Friedman J, Hastie T, Tibshirani R. The elements of statistical learning: Springer series in statistics. Berlin: Springer; 2001.

    Google Scholar 

  3. Abu-Mostafa YS, Magdon-Ismail M, Lin H-T. Learning from data. New York: AMLBook; 2012.

    Google Scholar 

  4. Jordan M, Mitchell T. Machine learning: trends, perspectives, and prospects. Science. 2015;349(6245):255–60.

    Article  CAS  PubMed  Google Scholar 

  5. Kohli M, Prevedello LM, Filice RW, Geis JR. Implementing machine learning in radiology practice and research. AJR Am J Roentgenol. 2017;208(4):754–60.

    Article  PubMed  Google Scholar 

  6. Martinez TR, Zeng X. Feature weighting using neural networks. In: Proceedings of the IEEE International Joint Conference on Neural Networks IJCNN’04; 2004. p. 1327–30.

    Google Scholar 

  7. Alpaydin E. Introduction to machine learning. Cambridge: The MIT Press; 2014.

    Google Scholar 

  8. Langley P. Machine learning as an experimental science. Mach Learn. 1988;3(1):5–8.

    Google Scholar 

  9. Özöğür-Akyüz S, Ünay D, Smola A. Guest editorial: model selection and optimization in machine learning. Mach Learn. 2011;85(1):1.

    Article  Google Scholar 

  10. Motwani M, Dey D, Berman DS, Germano G, Achenbach S, Al-Mallah MH, et al. Machine learning for prediction of all-cause mortality in patients with suspected coronary artery disease: a 5-year multicentre prospective registry analysis. Eur Heart J. 2017;38(7):500–7.

    PubMed  Google Scholar 

  11. Greenspan H, van Ginneken B, Summers RM. Guest editorial deep learning in medical imaging: Overview and future promise of an exciting new technique. IEEE Trans Med Imaging. 2016;35(5):1153–9.

    Article  Google Scholar 

  12. Petersen SE, Matthews PM, Bamberg F, Bluemke DA, Francis JM, Friedrich MG, et al. Imaging in population science: cardiovascular magnetic resonance in 100,000 participants of UK Biobank-rationale, challenges and approaches. J Cardiovasc Magn Reson. 2013;15(1):46.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Fonseca CG, Backhaus M, Bluemke DA, Britten RD, Do Chung J, Cowan BR, et al. The Cardiac Atlas Project—an imaging database for computational modeling and statistical atlases of the heart. Bioinformatics. 2011;27(16):2288–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. del Toro OAJ, Goksel O, Menze B, Müller H, Langs G, Weber M-A, et al. VISCERAL–VISual Concept Extraction challenge in RAdioLogy: ISBI 2014 challenge organization. Proceedings of the VISCERAL Challenge at ISBI. 2014;1194:6–15.

    Google Scholar 

  15. Kirişli H, Schaap M, Metz C, Dharampal A, Meijboom WB, Papadopoulou S-L, et al. Standardized evaluation framework for evaluating coronary artery stenosis detection, stenosis quantification and lumen segmentation algorithms in computed tomography angiography. Med Image Anal. 2013;17(8):859–76.

    Article  PubMed  Google Scholar 

  16. Grand Challenges in Biomedical Imaging. 2016. Available from: https://grand-challenge.org/All_Challenges/.

  17. Data Science Bowl. 2016. Available from: https://www.kaggle.com/c/second-annual-data-science-bowl.

  18. Seidman AD, Pilewskie ML, Robson ME, Kelvin JF, Zauderer MG, Epstein AS, et al. Integration of multi-modality treatment planning for early stage breast cancer (BC) into Watson for Oncology, a Decision Support System: Seeing the forest and the trees. J Clin Oncol. 2015;33(15_suppl):e12042–e.

    Article  Google Scholar 

  19. Johnson AE, Ghassemi MM, Nemati S, Niehaus KE, Clifton DA, Clifford GD. Machine learning and decision support in critical care. Proc IEEE. 2016;104(2):444–66.

    Article  Google Scholar 

  20. Gultepe E, Green JP, Nguyen H, Adams J, Albertson T, Tagkopoulos I. From vital signs to clinical outcomes for patients with sepsis: a machine learning basis for a clinical decision support system. J Am Med Inform Assoc. 2014;21(2):315–25.

    Article  PubMed  Google Scholar 

  21. Gulshan V, Peng L, Coram M, Stumpe MC, Wu D, Narayanaswamy A, et al. Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. JAMA. 2016;316(22):2402–10.

    Article  PubMed  Google Scholar 

  22. Long E, Lin H, Liu Z, Wu X, Wang L, Jiang J, et al. An artificial intelligence platform for the multihospital collaborative management of congenital cataracts. Nat Biomed Eng. 2017;1:0024.

    Article  Google Scholar 

  23. Esteva A, Kuprel B, Novoa RA, Ko J, Swetter SM, Blau HM, et al. Dermatologist-level classification of skin cancer with deep neural networks. Nature. 2017;542(7639):115–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Beck AH, Sangoi AR, Leung S, Marinelli RJ, Nielsen TO, van de Vijver MJ, et al. Systematic analysis of breast cancer morphology uncovers stromal features associated with survival. Sci Transl Med. 2011;3(108):108ra13.

    Article  Google Scholar 

  25. Yu KH, Zhang C, Berry GJ, Altman RB, Re C, Rubin DL, et al. Predicting non-small cell lung cancer prognosis by fully automated microscopic pathology image features. Nat Commun. 2016;7:12474.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Precision Medicine Initiative. 2016. Available from: https://www.nih.gov/news-events/news-releases/nih-awards-55-million-build-million-person-precision-medicine-study https://www.nimhd.nih.gov/programs/collab/pmi/ https://syndication.nih.gov/multimedia/pmi/infographics/pmi-infographic.pdf.

  27. Artificial Intelligence Used To Detect Rare Leukemia Type In Japan. 2016. Available from: http://www.ndtv.com/health/artificial-intelligence-used-to-detect-rare-leukemia-type-in-japan-1440789.

  28. Sharpless N. As seen on 60 minutes: Watson accelerates precision oncology. 2016. Available from: https://www.ibm.com/blogs/think/2016/10/sharpless/.

  29. McDonald JF, Mezencev R, Long TQ, Benigno B, Bonta I, Priore GD. Accurate prediction of optimal cancer drug therapies from molecular profiles by a machine-learning algorithm. J Clin Oncol. 2015;33(15_suppl):e22182–e.

    Article  Google Scholar 

  30. Ramarajan N, Badwe RA, Perry P, Srivastava G, Nair NS, Gupta S. A machine learning approach to enable evidence based oncology practice: ranking grade and applicability of RCTs to individual patients. J Clin Oncol. 2016;34(15_suppl):e18165–e.

    Article  Google Scholar 

  31. Sidaway P. Immunotherapy: genomic and immunological features predict a response. Nat Rev Clin Oncol. 2017;14(5):263.

    Article  PubMed  Google Scholar 

  32. Shah SJ, Katz DH, Selvaraj S, Burke MA, Yancy CW, Gheorghiade M, et al. Phenomapping for novel classification of heart failure with preserved ejection fraction. Circulation. 2015;131(3):269–79. https://doi.org/10.1161/CIRCULATIONAHA.114.010637.

    Article  PubMed  Google Scholar 

  33. Wang S, Summers RM. Machine learning and radiology. Med Image Anal. 2012;16(5):933–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Akkus Z, Galimzianova A, Hoogi A, Rubin DL, Erickson BJ. Deep learning for brain MRI segmentation: state of the art and future directions. J Digit Imaging. 2017;30:449.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Kamnitsas K, Ledig C, Newcombe VFJ, Simpson JP, Kane AD, Menon DK, et al. Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentation. Med Image Anal. 2017;36:61–78.

    Article  PubMed  Google Scholar 

  36. Havaei M, Davy A, Warde-Farley D, Biard A, Courville A, Bengio Y, et al. Brain tumor segmentation with deep neural networks. Med Image Anal. 2017;35:18–31.

    Article  PubMed  Google Scholar 

  37. van Ginneken B. Fifty years of computer analysis in chest imaging: rule-based, machine learning, deep learning. Radiol Phys Technol. 2017;10(1):23–32.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Doel T, Gavaghan DJ, Grau V. Review of automatic pulmonary lobe segmentation methods from CT. Comput Med Imaging Graph. 2015;40:13–29.

    Article  PubMed  Google Scholar 

  39. Mansoor A, Bagci U, Foster B, Xu Z, Papadakis GZ, Folio LR, et al. Segmentation and image analysis of abnormal lungs at CT: current approaches, challenges, and future trends. Radiographics. 2015;35(4):1056–76.

    Article  PubMed  Google Scholar 

  40. Ikushima K, Arimura H, Jin Z, Yabu-Uchi H, Kuwazuru J, Shioyama Y, et al. Computer-assisted framework for machine-learning-based delineation of GTV regions on datasets of planning CT and PET/CT images. J Radiat Res. 2017;58(1):123–34.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Ibragimov B, Xing L. Segmentation of organs-at-risks in head and neck CT images using convolutional neural networks. Med Phys. 2017;44(2):547–57.

    Article  CAS  PubMed  Google Scholar 

  42. Belharbi S, Chatelain C, Herault R, Adam S, Thureau S, Chastan M, et al. Spotting L3 slice in CT scans using deep convolutional network and transfer learning. Comput Biol Med. 2017;87:95–103.

    Article  PubMed  Google Scholar 

  43. Summers RM. Progress in fully automated abdominal CT interpretation. AJR Am J Roentgenol. 2016;207(1):67–79.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Roth HR, Lu L, Liu J, Yao J, Seff A, Cherry K, et al. Improving computer-aided detection using convolutional neural networks and random view aggregation. IEEE Trans Med Imaging. 2016;35(5):1170–81.

    Article  PubMed  Google Scholar 

  45. Näppi JJ, Hironaka T, Regge D, Yoshida H, editors. Deep transfer learning of virtual endoluminal views for the detection of polyps in CT colonography. San Diego: Proc SPIE; 2016.

    Google Scholar 

  46. Qi D, Hao C, Lequan Y, Lei Z, Jing Q, Defeng W, et al. Automatic detection of cerebral microbleeds from MR images via 3D convolutional neural networks. IEEE Trans Med Imaging. 2016;35(5):1182–95.

    Article  Google Scholar 

  47. Anthimopoulos M, Christodoulidis S, Ebner L, Christe A, Mougiakakou S. Lung pattern classification for interstitial lung diseases using a deep convolutional neural network. IEEE Trans Med Imaging. 2016;35(5):1207–16.

    Article  PubMed  Google Scholar 

  48. Bergtholdt M, Wiemker R, Klinder T, editors. Pulmonary nodule detection using a cascaded SVM classifier. SPIE Medical Imaging; 2016. International Society for Optics and Photonics.

    Google Scholar 

  49. Setio AA, Ciompi F, Litjens G, Gerke P, Jacobs C, van Riel SJ, et al. Pulmonary nodule detection in CT images: false positive reduction using multi-view convolutional networks. IEEE Trans Med Imaging. 2016;35(5):1160–9.

    Article  PubMed  Google Scholar 

  50. Ciompi F, Chung K, Van Riel SJ, Setio AAA, Gerke PK, Jacobs C, et al. Towards automatic pulmonary nodule management in lung cancer screening with deep learning. Sci Rep. 2017;7:46479.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Rucco M, Sousa-Rodrigues D, Merelli E, Johnson JH, Falsetti L, Nitti C, et al. Neural hypernetwork approach for pulmonary embolism diagnosis. BMC Res Notes. 2015;8:617.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Rajkomar A, Lingam S, Taylor AG, Blum M, Mongan J. High-throughput classification of radiographs using deep convolutional neural networks. J Digit Imaging. 2017;30(1):95–101.

    Article  PubMed  Google Scholar 

  53. Rampun A, Tiddeman B, Zwiggelaar R, Malcolm P. Computer aided diagnosis of prostate cancer: a texton based approach. Med Phys. 2016;43(10):5412.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Dhungel N, Carneiro G, Bradley AP. A deep learning approach for the analysis of masses in mammograms with minimal user intervention. Med Image Anal. 2017;37:114–28.

    Article  PubMed  Google Scholar 

  55. Kooi T, Litjens G, van Ginneken B, Gubern-Mérida A, Sánchez CI, Mann R, et al. Large scale deep learning for computer aided detection of mammographic lesions. Med Image Anal. 2017;35:303–12.

    Article  PubMed  Google Scholar 

  56. Lassen B, van Rikxoort EM, Schmidt M, Kerkstra S, van Ginneken B, Kuhnigk J-M. Automatic segmentation of the pulmonary lobes from chest CT scans based on fissures, vessels, and bronchi. IEEE Trans Med Imaging. 2013;32(2):210–22.

    Article  PubMed  Google Scholar 

  57. Wang J, Yang X, Cai H, Tan W, Jin C, Li L. Discrimination of breast cancer with microcalcifications on mammography by deep learning. Sci Rep. 2016;6:27327.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Dilsizian SE, Siegel EL. Artificial intelligence in medicine and cardiac imaging: harnessing big data and advanced computing to provide personalized medical diagnosis and treatment. Curr Cardiol Rep. 2013;16(1):441.

    Article  Google Scholar 

  59. Krittanawong C, Zhang H, Wang Z, Aydar M, Kitai T. Artificial intelligence in precision cardiovascular medicine. J Am Coll Cardiol. 2017;69(21):2657–64.

    Article  PubMed  Google Scholar 

  60. Slomka PJ, Dey D, Sitek A, Motwani M, Berman DS, Germano G. Cardiac imaging: working towards fully-automated machine analysis & interpretation. Expert Rev Med Devices. 2017;14(3):197–212.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Douglas PS, Cerqueira MD, Berman DS, Chinnaiyan K, Cohen MS, Lundbye JB, et al. The future of cardiac imaging: report of a think tank convened by the American College of Cardiology. JACC Cardiovasc Imaging. 2016;9(10):1211–23.

    Article  PubMed  Google Scholar 

  62. Nagueh SF. Unleashing the potential of machine-based learning for the diagnosis of cardiac diseases. Am Heart Assoc; 2016; 9(6).

    Google Scholar 

  63. Tesche C, De Cecco CN, Albrecht MH, Duguay TM, Bayer RR 2nd, Litwin SE, et al. Coronary CT angiography-derived fractional flow reserve. Radiology. 2017;285(1):17–33.

    Article  PubMed  Google Scholar 

  64. Avendi MR, Kheradvar A, Jafarkhani H. A combined deep-learning and deformable-model approach to fully automatic segmentation of the left ventricle in cardiac MRI. Med Image Anal. 2016;30:108–19.

    Article  CAS  PubMed  Google Scholar 

  65. Germano G, Kavanagh PB, Slomka PJ, Van Kriekinge SD, Pollard G, Berman DS. Quantitation in gated perfusion SPECT imaging: the Cedars-Sinai approach. J Nucl Cardiol. 2007;14(4):433–54.

    Article  PubMed  Google Scholar 

  66. Garcia EV, Faber TL, Cooke CD, Folks RD, Chen J, Santana C. The increasing role of quantification in clinical nuclear cardiology: the Emory approach. J Nucl Cardiol. 2007;14(4):420–32.

    Article  PubMed  Google Scholar 

  67. Arsanjani R, Xu Y, Hayes SW, Fish M, Lemley M, Gerlach J, et al. Comparison of fully automated computer analysis and visual scoring for detection of coronary artery disease from myocardial perfusion SPECT in a large population. J Nucl Med. 2013;54(2):221–8.

    Article  PubMed  Google Scholar 

  68. Betancur J, Rubeaux M, Fuchs T, Otaki Y, Arnson Y, Slipczuk L, et al. Automatic valve plane localization in myocardial perfusion SPECT/CT by machine learning: anatomical and clinical validation. J Nucl Med. 2017;58(6):961–7.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Arnoldi E, Gebregziabher M, Schoepf UJ, Goldenberg R, Ramos-Duran L, Zwerner PL, et al. Automated computer-aided stenosis detection at coronary CT angiography: initial experience. Eur Radiol. 2010;20(5):1160–7.

    Article  PubMed  Google Scholar 

  70. Halpern EJ, Halpern DJ. Diagnosis of coronary stenosis with CT angiography: comparison of automated computer diagnosis with expert readings. Acad Radiol. 2011;18(3):324–33.

    Article  PubMed  Google Scholar 

  71. Goldenberg R, Eilot D, Begelman G, Walach E, Ben-Ishai E, Peled N. Computer-aided simple triage (CAST) for coronary CT angiography (CCTA). Int J Comput Assist Radiol Surg. 2012;7(6):819–27.

    Article  PubMed  Google Scholar 

  72. Kang K-W, Chang H-J, Shim H, Kim Y-J, Choi B-W, Yang W-I, et al. Feasibility of an automatic computer-assisted algorithm for the detection of significant coronary artery disease in patients presenting with acute chest pain. Eur J Radiol. 2012;81(4):e640–e6.

    Article  PubMed  Google Scholar 

  73. Kang D, Slomka P, Nakazato R, Cheng VY, Min JK, Li D, et al., editors. Automatic detection of significant and subtle arterial lesions from coronary CT angiography. SPIE Medical Imaging; 2012. International Society for Optics and Photonics.

    Google Scholar 

  74. Kang D, Dey D, Slomka PJ, Arsanjani R, Nakazato R, Ko H, et al. Structured learning algorithm for detection of nonobstructive and obstructive coronary plaque lesions from computed tomography angiography. J Med Imaging (Bellingham, Wash). 2015;2(1):014003.

    Article  Google Scholar 

  75. Agatston AS, Janowitz WR, Hildner FJ, Zusmer NR, Viamonte M Jr, Detrano R. Quantification of coronary artery calcium using ultrafast computed tomography. J Am Coll Cardiol. 1990;15(4):827–32.

    Article  CAS  PubMed  Google Scholar 

  76. Kondos GT, Hoff JA, Sevrukov A, Daviglus ML, Garside DB, Devries SS, et al. Electron-beam tomography coronary artery calcium and cardiac events: a 37-month follow-up of 5635 initially asymptomatic low- to intermediate-risk adults. Circulation. 2003;107(20):2571–6.

    Article  PubMed  Google Scholar 

  77. Wolterink JM, Leiner T, de Vos BD, van Hamersvelt RW, Viergever MA, Išgum I. Automatic coronary artery calcium scoring in cardiac CT angiography using paired convolutional neural networks. Med Image Anal. 2016;34:123–36.

    Article  PubMed  Google Scholar 

  78. Sengupta PP, Huang YM, Bansal M, Ashrafi A, Fisher M, Shameer K, et al. Cognitive machine-learning algorithm for cardiac imaging: a pilot study for differentiating constrictive pericarditis from restrictive cardiomyopathy. Circ Cardiovasc Imaging. 2016;9(6):e004330.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Mahmood SS, Levy D, Vasan RS, Wang TJ. The Framingham Heart Study and the epidemiology of cardiovascular disease: a historical perspective. Lancet. 2014;383(9921):999–1008.

    Article  PubMed  Google Scholar 

  80. Budoff MJ, Dowe D, Jollis JG, Gitter M, Sutherland J, Halamert E, et al. Diagnostic performance of 64-multidetector row coronary computed tomographic angiography for evaluation of coronary artery stenosis in individuals without known coronary artery disease: results from the prospective multicenter ACCURACY (Assessment by Coronary Computed Tomographic Angiography of Individuals Undergoing Invasive Coronary Angiography) trial. J Am Coll Cardiol. 2008;52(21):1724–32.

    Article  PubMed  Google Scholar 

  81. Chow BJ, Small G, Yam Y, Chen L, Achenbach S, Al-Mallah M, et al. Incremental prognostic value of cardiac computed tomography in coronary artery disease using CONFIRMClinical perspective. Circ Cardiovasc Imaging. 2011;4(5):463–72.

    Article  PubMed  Google Scholar 

  82. Hadamitzky M, Freißmuth B, Meyer T, Hein F, Kastrati A, Martinoff S, et al. Prognostic value of coronary computed tomographic angiography for prediction of cardiac events in patients with suspected coronary artery disease. JACC Cardiovasc Imaging. 2009;2(4):404–11.

    Article  PubMed  Google Scholar 

  83. Hadamitzky M, Taubert S, Deseive S, Byrne RA, Martinoff S, Schomig A, et al. Prognostic value of coronary computed tomography angiography during 5 years of follow-up in patients with suspected coronary artery disease. Eur Heart J. 2013;34(42):3277–85.

    Article  PubMed  Google Scholar 

  84. Dawes TJ, de Marvao A, Shi W, Fletcher T, Watson GM, Wharton J, et al. Machine learning of three-dimensional right ventricular motion enables outcome prediction in pulmonary hypertension: a cardiac MR imaging study. Radiology. 2017;283(2):381–90.

    Article  PubMed  Google Scholar 

  85. Kotu LP, Engan K, Borhani R, Katsaggelos AK, Orn S, Woie L, et al. Cardiac magnetic resonance image-based classification of the risk of arrhythmias in post-myocardial infarction patients. Artif Intell Med. 2015;64(3):205–15.

    Article  PubMed  Google Scholar 

  86. Arsanjani R, Dey D, Khachatryan T, Shalev A, Hayes SW, Fish M, et al. Prediction of revascularization after myocardial perfusion SPECT by machine learning in a large population. J Nucl Cardiol. 2015;22(5):877–84.

    Article  PubMed  Google Scholar 

  87. Jha S, Topol EJ. Adapting to artificial intelligence: radiologists and pathologists as information specialists. JAMA. 2016;316(22):2353–4.

    Article  PubMed  Google Scholar 

  88. Chinthapalli K. The hackers holding hospitals to ransom. BMJ. 2017;357:j 2214.

    Article  Google Scholar 

  89. Moss TJ, Calland JF, Enfield KB, Gomez-Manjarres DC, Ruminski C, DiMarco JP, et al. New-onset atrial fibrillation in the critically ill. Crit Care Med. 2017;45(5):790.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Chockley K, Emanuel E. The end of radiology? three threats to the future practice of radiology. J Am Coll Radiol. 2016;13(12):1415–20.

    Article  PubMed  Google Scholar 

  91. Obermeyer Z, Emanuel EJ. Predicting the future – big data, machine learning, and clinical medicine. N Engl J Med. 2016;375(13):1216–9.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Humana Press

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Eid, M. et al. (2019). Machine Learning and Artificial Intelligence in Cardiovascular Imaging. In: Schoepf, U. (eds) CT of the Heart. Contemporary Medical Imaging. Humana, Totowa, NJ. https://doi.org/10.1007/978-1-60327-237-7_68

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-237-7_68

  • Published:

  • Publisher Name: Humana, Totowa, NJ

  • Print ISBN: 978-1-60327-236-0

  • Online ISBN: 978-1-60327-237-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics