Skip to main content

The Long March into Clinical Practice: Cardiac CT and Its Competitors

  • Chapter
  • First Online:
CT of the Heart

Part of the book series: Contemporary Medical Imaging ((CMI))

  • 2781 Accesses

Abstract

In the early twentieth century, control of infectious diseases, increasing longevity, and poor lifestyles resulted in chronic diseases becoming the major cause of disability and death. By the 1920s, coronary artery disease (CAD) became the leading cause of death in the United States. As treatments emerged to treat CAD, it became important to develop means for identifying those patients at risk for developing the disease and its complications. Initial diagnostic work in this regard was initiated even prior to the advent of exercise electrocardiography. In the 1920s, Master developed his famous “two-step” stress test, which allowed physicians to assess patients’ functional capacity in a semiquantitative manner and to provoke angina symptoms through physical activity. In the 1950s, treadmill testing was implemented, and in 1963, Robert Bruce published his protocol for performing graded multistage treadmill exercise with electrocardiographic monitoring, a protocol that is still used today. This development of the Bruce protocol treadmill exercise was timely since the 1960s saw the introduction of cardiac catheterization and coronary bypass surgery. With this dramatic new treatment option, a need emerged to accurately identify those patients who were at risk for cardiac events and thus potential beneficiaries of coronary artery bypass surgery.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Dalen JE, et al. The epidemic of the 20(th) century: coronary heart disease. Am J Med. 2014;127(9):807–12.

    Article  PubMed  Google Scholar 

  2. Master AM. The two-step exercise electrocardiogram: a test for coronary insufficiency. Ann Intern Med. 1950;32(5):842–63.

    Article  CAS  PubMed  Google Scholar 

  3. Bruce RA, et al. Exercising testing in adult normal subjects and cardiac patients. Pediatrics. 1963;32:SUPPL 742–56.

    CAS  Google Scholar 

  4. Coplan NL. Evaluation of patients for coronary artery bypass surgery: the role of exercise testing. Am Heart J. 1991;122(6):1800–2.

    Article  CAS  PubMed  Google Scholar 

  5. Mark DB, et al. Exercise treadmill score for predicting prognosis in coronary artery disease. Ann Intern Med. 1987;106(6):793–800.

    Article  CAS  PubMed  Google Scholar 

  6. Zaret BL, et al. Noninvasive regional myocardial perfusion with radioactive potassium. Study of patients at rest, with exercise and during angina pectoris. N Engl J Med. 1973;288(16):809–12.

    Article  CAS  PubMed  Google Scholar 

  7. Berman DS, et al. Noninvasive detection of regional myocardial ischemia using rubidium-81 and the scintillation camera: comparison with stress electrocardiography in patients with arteriographically documented coronary stenosis. Circulation. 1975;52(4):619–26.

    Article  CAS  PubMed  Google Scholar 

  8. Wackers FJ, et al. Prognostic significance of normal quantitative planar thallium-201 stress scintigraphy in patients with chest pain. J Am Coll Cardiol. 1985;6(1):27–30.

    Article  CAS  PubMed  Google Scholar 

  9. Germano G, et al. Quantitative LVEF and qualitative regional function from gated thallium-201 perfusion SPECT. J Nucl Med. 1997;38(5):749–54.

    CAS  PubMed  Google Scholar 

  10. Garcia EV, Maddahi J, Berman DS, Waxman A. Space-time quantitation of thallium-201 myocardial scintigraphy. J Nucl Med. 1981;22(4):309–17.

    CAS  PubMed  Google Scholar 

  11. Garcia EV, Van Train K, Maddahi J, Prigent F, Friedman J, Areeda J, Waxman A, Berman DS. Quantification of rotational thallium-201 myocardial tomography. J Nucl Med. 1985;26(1):17–26.

    CAS  PubMed  Google Scholar 

  12. Ladenheim ML, et al. Extent and severity of myocardial hypoperfusion as predictors of prognosis in patients with suspected coronary artery disease. J Am Coll Cardiol. 1986;7(3):464–71.

    Article  CAS  PubMed  Google Scholar 

  13. Weiss AT, et al. Transient ischemic dilation of the left ventricle on stress thallium-201 scintigraphy: a marker of severe and extensive coronary artery disease. J Am Coll Cardiol. 1987;9(4):752–9.

    Article  CAS  PubMed  Google Scholar 

  14. Berman DS, et al. Separate acquisition rest thallium-201/stress technetium-99m sestamibi dual-isotope myocardial perfusion single-photon emission computed tomography: a clinical validation study. J Am Coll Cardiol. 1993;22(5):1455–64.

    Article  CAS  PubMed  Google Scholar 

  15. Hachamovitch R, et al. Comparison of the short-term survival benefit associated with revascularization compared with medical therapy in patients with no prior coronary artery disease undergoing stress myocardial perfusion single photon emission computed tomography. Circulation. 2003;107(23):2900–7.

    Article  PubMed  Google Scholar 

  16. Rozanski A, et al. Comparison of long-term mortality risk following normal exercise vs adenosine myocardial perfusion SPECT. J Nucl Cardiol. 2010;17(6):999–1008.

    Article  PubMed Central  PubMed  Google Scholar 

  17. Rozanski A, et al. Long-term mortality following normal exercise myocardial perfusion SPECT according to coronary disease risk factors. J Nucl Cardiol. 2014;21(2):341–50.

    Article  PubMed  Google Scholar 

  18. Supariwala A, et al. Influence of mode of stress and coronary risk factor burden upon long-term mortality following normal stress myocardial perfusion single-photon emission computed tomographic imaging. Am J Cardiol. 2013;111(6):846–50.

    Article  PubMed  Google Scholar 

  19. Hachamovitch R, et al. Incremental prognostic value of myocardial perfusion single photon emission computed tomography for the prediction of cardiac death: differential stratification for risk of cardiac death and myocardial infarction. Circulation. 1998;97(6):535–43.

    Article  CAS  PubMed  Google Scholar 

  20. Kang X, et al. Incremental prognostic value of myocardial perfusion single photon emission computed tomography in patients with diabetes mellitus. Am Heart J. 1999;138(6 Pt 1):1025–32.

    Article  CAS  PubMed  Google Scholar 

  21. Yao SS, et al. Practical applications in stress echocardiography: risk stratification and prognosis in patients with known or suspected ischemic heart disease. J Am Coll Cardiol. 2003;42(6):1084–90.

    Article  PubMed  Google Scholar 

  22. Rumberger JA, et al. Coronary artery calcium area by electron-beam computed tomography and coronary atherosclerotic plaque area. A histopathologic correlative study. Circulation. 1995;92(8):2157–62.

    Article  CAS  PubMed  Google Scholar 

  23. Budoff MJ, et al. Long-term prognosis associated with coronary calcification: observations from a registry of 25,253 patients. J Am Coll Cardiol. 2007;49(18):1860–70.

    Article  PubMed  Google Scholar 

  24. Detrano R, et al. Coronary calcium as a predictor of coronary events in four racial or ethnic groups. N Engl J Med. 2008;358(13):1336–45.

    Article  CAS  PubMed  Google Scholar 

  25. Polonsky TS, et al. Coronary artery calcium score and risk classification for coronary heart disease prediction. JAMA. 2010;303(16):1610–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Nasir K, et al. Interplay of coronary artery calcification and traditional risk factors for the prediction of all-cause mortality in asymptomatic individuals. Circ Cardiovasc Imaging. 2012;5(4):467–73.

    Article  PubMed  Google Scholar 

  27. Silverman MG, et al. Impact of coronary artery calcium on coronary heart disease events in individuals at the extremes of traditional risk factor burden: the Multi-Ethnic Study of Atherosclerosis. Eur Heart J. 2014;35(33):2232–41.

    Article  CAS  PubMed  Google Scholar 

  28. Yeboah J, et al. Comparison of novel risk markers for improvement in cardiovascular risk assessment in intermediate-risk individuals. JAMA. 2012;308(8):788–95.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Min JK, et al. Age- and sex-related differences in all-cause mortality risk based on coronary computed tomography angiography findings results from the International Multicenter CONFIRM (Coronary CT Angiography Evaluation for Clinical Outcomes: An International Multicenter Registry) of 23,854 patients without known coronary artery disease. J Am Coll Cardiol. 2011;58(8):849–60.

    Article  PubMed  Google Scholar 

  30. Shaw LJ, et al. Why all the focus on cardiac imaging? JACC Cardiovasc Imaging. 2010;3(7):789–94.

    Article  PubMed  Google Scholar 

  31. Rozanski A, Muhlestein JB, Berman DS. Primary prevention of CVD: the role of imaging trials. JACC Cardiovasc Imaging. 2017;10(3):304–17.

    Article  PubMed  Google Scholar 

  32. Goldstein JA, et al. The CT-STAT (coronary computed tomographic angiography for systematic triage of acute chest pain patients to treatment) trial. J Am Coll Cardiol. 2011;58(14):1414–22.

    Article  PubMed  Google Scholar 

  33. Goldstein JA, et al. A randomized controlled trial of multi-slice coronary computed tomography for evaluation of acute chest pain. J Am Coll Cardiol. 2007;49(8):863–71.

    Article  PubMed  Google Scholar 

  34. Litt HI, et al. CT angiography for safe discharge of patients with possible acute coronary syndromes. N Engl J Med. 2012;366(15):1393–403.

    Article  CAS  PubMed  Google Scholar 

  35. Douglas PS, et al. Outcomes of anatomical versus functional testing for coronary artery disease. N Engl J Med. 2015;372:1291–300.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Hoffmann U, et al. Coronary CT angiography versus standard evaluation in acute chest pain. N Engl J Med. 2012;367(4):299–308.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Levsky JM, Travin MI, Haramati LB. Coronary computed tomography angiography versus radionuclide myocardial perfusion imaging in patients with chest pain admitted to telemetry: a randomized, controlled trial. Ann Intern Med. 2016;164(2):133–4.

    Article  PubMed  Google Scholar 

  38. Uretsky S, et al. Comparative effectiveness of coronary CT angiography vs stress cardiac imaging in patients following hospital admission for chest pain work-up: the Prospective First Evaluation in Chest Pain (PERFECT) Trial. J Nucl Cardiol. 2017;24(4):1267–78.

    Article  PubMed  Google Scholar 

  39. Linde JJ, et al. Long-term clinical impact of coronary CT angiography in patients with recent acute-onset chest pain: the randomized controlled CATCH trial. JACC Cardiovasc Imaging. 2015;8(12):1404–13.

    Article  PubMed  Google Scholar 

  40. Investigators, S.-H. CT coronary angiography in patients with suspected angina due to coronary heart disease (SCOT-HEART): an open-label, parallel-group, multicentre trial. Lancet. 2015;385(9985):2383–91.

    Article  Google Scholar 

  41. Hulten E, et al. Outcomes after coronary computed tomography angiography in the emergency department: a systematic review and meta-analysis of randomized, controlled trials. J Am Coll Cardiol. 2013;61(8):880–92.

    Article  PubMed  Google Scholar 

  42. Williams MC, et al. Use of coronary computed tomographic angiography to guide management of patients with coronary disease. J Am Coll Cardiol. 2016;67(15):1759–68.

    Article  PubMed Central  PubMed  Google Scholar 

  43. Cury RC, et al. Dipyridamole stress and rest myocardial perfusion by 64-detector row computed tomography in patients with suspected coronary artery disease. Am J Cardiol. 2010;106(3):310–5.

    Article  PubMed  Google Scholar 

  44. Min JK, et al. Diagnostic accuracy of fractional flow reserve from anatomic CT angiography. JAMA. 2012;308(12):1237–45.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Norgaard BL, et al. Diagnostic performance of noninvasive fractional flow reserve derived from coronary computed tomography angiography in suspected coronary artery disease: the NXT trial (analysis of coronary blood flow using CT angiography: next steps). J Am Coll Cardiol. 2014;63(12):1145–55.

    Article  PubMed  Google Scholar 

  46. Rocha-Filho JA, et al. Incremental value of adenosine-induced stress myocardial perfusion imaging with dual-source CT at cardiac CT angiography. Radiology. 2010;254(2):410–9.

    Article  PubMed Central  PubMed  Google Scholar 

  47. Murthy VL, et al. Improved cardiac risk assessment with noninvasive measures of coronary flow reserve. Circulation. 2011;124(20):2215–24.

    Article  PubMed Central  PubMed  Google Scholar 

  48. Berman DS, et al. Phase II safety and clinical comparison with single-photon emission computed tomography myocardial perfusion imaging for detection of coronary artery disease: flurpiridaz F 18 positron emission tomography. J Am Coll Cardiol. 2013;61(4):469–77.

    Article  CAS  PubMed  Google Scholar 

  49. Baber U, et al. Prevalence, impact, and predictive value of detecting subclinical coronary and carotid atherosclerosis in asymptomatic adults: the BioImage study. J Am Coll Cardiol. 2015;65(11):1065–74.

    Article  PubMed  Google Scholar 

  50. Laclaustra M, et al. Femoral and carotid subclinical atherosclerosis association with risk factors and coronary calcium: the AWHS study. J Am Coll Cardiol. 2016;67(11):1263–74.

    Article  PubMed  Google Scholar 

  51. Fernandez-Friera L, et al. Prevalence, vascular distribution, and multiterritorial extent of subclinical atherosclerosis in a middle-aged cohort: the PESA (progression of early subclinical atherosclerosis) study. Circulation. 2015;131(24):2104–13.

    Article  PubMed  Google Scholar 

  52. Berman DS, Arnson Y, Rozanski A. Coronary artery calcium scanning: the Agatston score and beyond. JACC Cardiovasc Imaging. 2016;9(12):1417–9.

    Article  PubMed  Google Scholar 

  53. Rozanski A, Slomka P, Berman SD. Extending the use of coronary calcium scanning to clinical rather than just screening populations: ready for prime time. Circ Cardiovasc Imaging. 2016;9(5):e004876.

    Article  PubMed  Google Scholar 

  54. Rozanski A, Cohen R, Uretsky S. The coronary calcium treadmill test: a new approach to the initial workup of patients with suspected coronary artery disease. J Nucl Cardiol. 2013;20(5):719–30.

    Article  PubMed  Google Scholar 

  55. Rozanski A, et al. Temporal trends in the frequency of inducible myocardial ischemia during cardiac stress testing: 1991 to 2009. J Am Coll Cardiol. 2013;61(10):1054–65.

    Article  PubMed  Google Scholar 

  56. Berman DS, Germano G, Slomka PJ. Improvement in PET myocardial perfusion image quality and quantification with flurpiridaz F 18. J Nucl Cardiol. 2012;19(Suppl 1):S38–45.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seth Uretsky .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Humana Press

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Uretsky, S., Rozanski, A., Berman, D. (2019). The Long March into Clinical Practice: Cardiac CT and Its Competitors. In: Schoepf, U. (eds) CT of the Heart. Contemporary Medical Imaging. Humana, Totowa, NJ. https://doi.org/10.1007/978-1-60327-237-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-237-7_3

  • Published:

  • Publisher Name: Humana, Totowa, NJ

  • Print ISBN: 978-1-60327-236-0

  • Online ISBN: 978-1-60327-237-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics