Skip to main content

Nucleotidases and Nucleoside Analog Cytotoxicity

  • Chapter
  • 607 Accesses

Part of the book series: Cancer Drug Discovery and Development ((CDD&D))

Abstract

Nucleoside analogs are an important part of therapeutic strategies in a broad range of diseases, especially cancer and viral infections. Most nucleoside analogs need to be phosphorylated to attain full clinical potency; thus, knowledge of the metabolism of this class of drugs is required to improve their clinical use. The 5′-nucleotidases are a family of enzymes that catalyze the final dephosphorylation step of nucleotides in the cell and, by opposing the activation step catalyzed by nucleoside kinases, initiate subsequent purine and pyrimidine catabolism. They also catalyze a critical step in nucleotide analog degradation; therefore, their expression and regulation in various tissues will likely have an impact on a nucleoside drug’s half-life in the human body. Numerous studies in vitro and in vivo indicate that increased expression of 5′_nucleotidase may decrease nucleoside analog activation and thereby contribute to drug resistance. Because cloned 5′_nucleotidases have been described in human tissues, it is not always possible to assess which particular 5′-nucleotidase is important in nucleoside drug catabolism. In this chapter, we review the properties of all cloned 5′-nucleotidases and the important role of these enzymes in nucleoside analog metabolism and clinical resistance.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kunz, B. A., Kohalmi, S. E., Kunkel, T. A., Mathews, C. K., McIntosh, E. M., and Reidy, J. A. Deoxyribonucleoside triphosphate levels: a critical factor in themaintenance of genetic stability. Mutat. Res. 1994;318:1–64.

    PubMed  CAS  Google Scholar 

  2. Valentine, W. N., Fink, K., Paglia, D. E., Harris, S. R., and Adams, W. S. (1974). Hereditary hemolytic anemia with human erythrocyte pyrimidine 5′-nucleotidase deficiency. J. Clin. Invest. 54, 866–879.

    PubMed  CAS  Google Scholar 

  3. Reichard, P. (1988). Interactions between deoxyribonucleotide and DNA synthesis. Annu. Rev. Biochem. 57, 349–374.

    PubMed  CAS  Google Scholar 

  4. Kennedy, E. P., Borkenhagen, L. F., Smith, S. W. (1959). Possible metabolic functions of deoxycytidine diphosphate choline and deoxycytidine diphosphate ethanolamine. J. Biol. Chem. 234,1998–2000.

    PubMed  CAS  Google Scholar 

  5. Spyrou, G. A., and Reichard, P. (1989). Intracellular compartmentation of deoxycytidine nucleotide pools in S phase mouse 3T3 fibroblasts. J. Biol. Chem. 264, 960–964.

    PubMed  CAS  Google Scholar 

  6. Haynes, R. H., and Kunz, B. A. (1986). The influence of thymine nucleotide depletion on genetic stability and change in eucaryotic cells. Current Sci. 55, 1–11.

    CAS  Google Scholar 

  7. Gangi-Peterson, L., Sorscher, D. H., Reynolds, J. W., Kepler, T. B., and Mitchell, B. S. (1999). Nucleotide pools imbalance and adenosine deaminase deficiency induce alterations of N-region insertions during V(D)J recombination. J. Clin.Invest. 103, 833–841.

    PubMed  CAS  Google Scholar 

  8. Kunz, B. A., and Kohalmi, S. E. (1991). Modulation of mutagenesis by deoxyribonucleotide levels. Annu. Rev. Genet. 25, 339–359.

    PubMed  CAS  Google Scholar 

  9. Jordan, A., and Reichard, P. (1998). Ribonucleotide reductases. Annu. Rev.Biochem. 67, 71–98.

    PubMed  CAS  Google Scholar 

  10. Plagemann, P. G., and Erbe, J. (1974). Intracellular conversions of deoxyribonu-cleosides by Novikoff rat hepatoma cells and effects of hydroxyurea. J. Cell.Physiol. 83, 321–336.

    PubMed  CAS  Google Scholar 

  11. Snyder, R. D. (1984). Deoxyribonucleoside triphosphate pools in human diploid fibroblasts and their modulation by hydroxyurea and deoxynucleosides. Biochem. Pharmacol. 33, 1515–1518.

    PubMed  CAS  Google Scholar 

  12. Bianchi, V., Pontis, E., and Reichard, P. (1986). Interrelations between substrate cycles and de novo synthesis of pyrimidine deoxyribonucleoside triphosphates in3T6 cells. Proc. Natl. Acad. Sci. U. S. A. 83, 986–990.

    PubMed  CAS  Google Scholar 

  13. Bianchi, V., Pontis, E., and Reichard, P. (1986). Changes of deoxyribonucleoside triphosphate pools induced by hydroxyurea and their relation to DNA synthesis. J. Biol. Chem. 261, 16,037–16,042.

    PubMed  CAS  Google Scholar 

  14. Mitchell, B. S., Mejias, E., Daddona, P. E., Kelley, W. N. (1978). Purinogenic immunodeficiency diseases: selective toxicity of deoxyribonucleosides for T cells. Proc. Natl. Acad. Sci. U. S. A. 75, 5011–5014.

    PubMed  CAS  Google Scholar 

  15. Mitchell, B. S., Edwards, N. L., and Koller, C. A. (1983). Deoxyribonucleoside triphosphate accumulation by leukemic cells. Blood 62, 419–424.

    PubMed  CAS  Google Scholar 

  16. Cohen, A., Hirschhorn, R., Horowitz, S. D., et al. (1978). Deoxyadenosine triphosphate as a potentially toxic metabolite in adenosine deaminase deficiency. Proc. Natl. Acad. Sci. U. S. A. 75, 472–476.

    PubMed  CAS  Google Scholar 

  17. Wortmann, R., L, Mitchell, B., S, Edwards, N., L, and Fox, I., H. (1979). Biochemical basis for differential deoxyadenosine toxicity to T and B lym-phoblasts: role for 5′-nucleotidase. Proc. Natl. Acad. Sci. U. S. A. 76, 2434–2437.

    PubMed  CAS  Google Scholar 

  18. Bianchi, V., Borella, S., Rampazzo, C., et al. (1997). Cell cycle-dependent metabolism of pyrimidine deoxynucleoside triphosphates in CEM cells. J. Biol. Chem. 272, 16,118–16,124.

    PubMed  CAS  Google Scholar 

  19. Snyder, R. D. (1984). The role of deoxynucleoside triphosphate pools in the inhibition of DNA-excision repair and replication in human cells by hydroxyurea. Mutat. Res. 131, 163–172.

    PubMed  CAS  Google Scholar 

  20. Xu, Y.-Z., Huang, P., and Plunkett, W. (1995). Functional compartmentation of dCTP pools. Preferential utilization of salvaged deoxycytidine for DNA repair in human lymphoblasts. J. Biol. Chem. 270, 631–637.

    PubMed  CAS  Google Scholar 

  21. Pontarin, G., Gallinaro, L., Ferraro, P., Reichard, P., and Bianchi, V. (2003). Origins of mitochondrial thymidine triphosphate: dynamic relations to cytosolic pools. Proc. Natl. Acad. Sci. U. S. A. 100, 12,159–12,164.

    PubMed  CAS  Google Scholar 

  22. Sherley, J. L., and Kelly, T. J. (1988). Regulation of human thymidine kinase during the cell cycle. J. Biol. Chem. 263, 8350–8358.

    PubMed  CAS  Google Scholar 

  23. Oliver, F. J., Collins, M. K., and Lopez-Rivas, A. (1996). Regulation of salvage pathway of deoxynucleotide synthesis in apoptosis induced by growth factor deprivation. Biochem. J. 316, 431–425.

    Google Scholar 

  24. Bianchi, V., Pontis, E., and Reichard, P. (1987). Regulation of pyrimidine deoxyribonucleotide metabolism by substrate cycles in dCMP deaminase-deficient V79 hamster cells. Mol. Cell. Biol. 7, 4218–4224.

    PubMed  CAS  Google Scholar 

  25. Zimmermann, H. (2000). Extracellular metabolism of ATP and other nucleotides. Naunyn Schmiedebergs Arch. Pharmacol. 362, 299–309.

    PubMed  CAS  Google Scholar 

  26. Dalton, A., Hornby, D. P., Langston, S. P., and Blackburn, G. M. (1992). Characterization and purification of a novel dATP-binding protein in eukaryotes. Biochem. J. 287, 871–879.

    PubMed  CAS  Google Scholar 

  27. Ford, K. G. (2000). The dNTPase enzyme activity is inhibited by nucleic acids and contains a heat-insensitive component. Biochem. Biophys. Res. Commun. 276, 823–829.

    PubMed  CAS  Google Scholar 

  28. Barankiewicz, J., and Cohen, A. (1984). Evidence for distinct catabolic pathways of adenine ribonucleotides and deoxyribonucleotides in human T lymphoblastoid cells. J. Biol. Chem. 259, 15,178–15,181.

    PubMed  CAS  Google Scholar 

  29. Bianchi, V., Ferraro, P., Borella, S., Bonvini, P., and Reichard, P. (1994). Effects of mutational loss of nucleoside kinases on deoxyadenosine 5′-phosphate/deoxyadenosine substrate cycle in cultured CEM and V79 cells. J. Biol. Chem. 269,16,677–16,683.

    PubMed  CAS  Google Scholar 

  30. Gazziola, C., Ferraro, P., Moras, M., Reichard, P., and Bianchi, V. (2001). Cytosolic high K(m) 5′-nucleotidase and 5–(3–)-deoxyribonucleotidase in substrate cycles involved in nucleotide metabolism. J. Biol. Chem. 276, 6185–6190.

    PubMed  CAS  Google Scholar 

  31. Leeds, J. M., Slabaugh, M. B., and Mathews, C. K. (1985). DNA precursor pools and ribonucleotide reductase activity: distribution between the nucleus and cytoplasm of mammalian cells. Mol. Cell Biol. 5, 3443–3450.

    PubMed  CAS  Google Scholar 

  32. Sikorska, M., Brewer, L. M., Youdale, T., et al. (1990). Evidence that mammalian ribonucleotide reductase is a nuclear membrane associated glycoprotein. Biochem. Cell Biol. 68, 880–888.

    PubMed  CAS  Google Scholar 

  33. Bestwick, R. K., and Mathews, C. K. (1982). Unusual compartmentation of precursors for nuclear and mitochondrial DNA in mouse L cells. J. Biol. Chem. 257,9305–9308.

    PubMed  CAS  Google Scholar 

  34. Chen, C. H., and Cheng, Y. C. (1992). The role of cytoplasmic deoxycytidine kinase in the mitochondrial effects of the anti-human immunodeficiency virus compound, 2′,3′-dideoxycytidine. J. Biol. Chem. 267, 2856–2859.

    PubMed  CAS  Google Scholar 

  35. Bridges, E. G., Jiang, Z., and Cheng, Y. C. (1999). Characterization of a dCTP transport activity reconstituted from human mitochondria. J. Biol. Chem. 274, 4620–4625.

    PubMed  CAS  Google Scholar 

  36. Dolce, V., Fiermonte, G., Runswick, M. J., Palmieri, F., and Walker, J. E. (2001). The human mitochondrial deoxynucleotide carrier and its role in the toxicity of nucleoside antivirals. Proc. Natl. Acad. Sci. U. S. A. 98, 2284–2288.

    PubMed  CAS  Google Scholar 

  37. Zhu, C., Johansson, M., and Karlsson, A. (2000). Incorporation of nucleoside analogs into nuclear or mitochondrial DNA is determined by the intracellular phosphorylation site. J. Biol. Chem. 275, 26,727–16,731.

    PubMed  CAS  Google Scholar 

  38. Rampazzo, C., Kost-Alimova, M., Ruzzenente, B., Dumanski, J. P., and Bianchi, V. (2002). Mouse cytosolic and mitochondrial deoxyribonucleotidases: cDNA cloning of the mitochondrial enzyme, gene structures, chromosomal mapping and comparison with the human orthologs. Gene 294, 109–117.

    PubMed  CAS  Google Scholar 

  39. Sala-Newby, G. B., and Newby, A. C. (2001). Cloning of a mouse cytosolic 5′-nucleotidase-I identifies a new gene related to human autoimmune infertility-related protein. Biochim. Biophys. Acta 1521, 12–18.

    PubMed  CAS  Google Scholar 

  40. Rinaldo-Matthis, A., Rampazzo, C., Reichard, P., Bianchi, V., and Nordlund, P. (2002). Crystal structure of a human mitochondrial deoxyribonucleotidase. Nat. Struct. Biol. 9, 779–787.

    PubMed  CAS  Google Scholar 

  41. Allegrini, S., Scaloni, A., Ferrara, L., et al. (2001). Bovine cytosolic 5′-nucleoti-dase acts through the formation of an aspartate 52-phosphoenzyme intermediate. J. Biol. Chem. 276, 33,526–33,532.

    PubMed  CAS  Google Scholar 

  42. Worku, Y., and Newby, A. C. (1982). Nucleoside exchange catalysed by the cyto-plasmic 5′-nucleotidase. Biochem. J. 205, 503–510.

    PubMed  CAS  Google Scholar 

  43. Tozzi, M. G., Camici, M., Pesi, R., Allegrini, S., Sgarrella, F., and Ipata, P. L.(1991). Nucleoside phosphotransferase activity of human colon carcinoma cytosolic 5′-nucleotidase. Arch. Biochem. Biophys. 291, 212–217.

    PubMed  CAS  Google Scholar 

  44. Amici, A., Emanuelli, M., Magni, G., Raffaelli, N., and Ruggieri, S. (1997). Pyrimidine nucleotidases from human erythrocyte possess phosphotransferase activities specific for pyrimidine nucleotides. FEBS Lett. 419, 263–267.

    PubMed  CAS  Google Scholar 

  45. Rampazzo, C., Mazzon, C., Reichard, P., and Bianchi, V. (2002). 5′-Nucleotidases:specific assays for five different enzymes in cell extracts. Biochem. Biophys. Res.Commun. 293, 258–263.

    PubMed  CAS  Google Scholar 

  46. Galmarini, C. M., Graham, K., Thomas, X., et al. (2001). Expression of high Km5′-nucleotidase in leukemic blasts is an independent prognostic factor in adults with acute myeloid leukemia. Blood 98, 1922–1926.

    PubMed  CAS  Google Scholar 

  47. Galmarini, C. M., Thomas, X., Calvo, F., et al. (2002). In vivo mechanisms of resistance to cytarabine in acute myeloid leukaemia. Br. J. Haematol. 117, 860–868.

    PubMed  CAS  Google Scholar 

  48. Galmarini, C. M., Thomas, X., Graham, K., et al. (2003). Deoxycytidine kinase and cN-II nucleotidase expression in blast cells predict survival in acute myeloid leukaemia patients treated with cytarabine. Br. J. Haematol. 122, 53–60.

    PubMed  CAS  Google Scholar 

  49. Thompson, L. F. (1991). 5′-Nucleotidase—an overview of the last 3 years. Adv.Exp. Med. Biol. 309B, 145–150.

    PubMed  CAS  Google Scholar 

  50. Thompson, L. F., and Ruedi, J. M. (1988). Synthesis of immunoglobin G by pokeweed mitogen or Epstein-Barr virus-stimulated human B cells in vitro is restricted to the ecto-5′-nucleotidase positive subset. J. Clin. Invest. 82, 902–905.

    PubMed  CAS  Google Scholar 

  51. Spychala, J., Lazarowski, E., Ostapkowicz, A., Ayscue, L. H., Jin, A., and Mitchell, B. S. (2004). Role of estrogen receptor in the regulation of ecto-5′-nucleotidase (eN) expression and extracellular adenosine generation in breast cancer. Clin. Cancer Res. 10, 708–717.

    PubMed  CAS  Google Scholar 

  52. Misumi, Y., Ogata, S., Ohkubo, K., Hirose, S., and Ikehara, Y. (1990). Primary structure of human placental 5′-nucleotidase and identification of the glycolipid anchor in the mature form. Eur. J. Biochem. 191, 563–569.

    PubMed  CAS  Google Scholar 

  53. Muller, G., Jung, C., Frick, W., Bandlow, W., and Kramer, W. (2002). Interaction of phosphatidylinositolglycan(-peptides) with plasma membrane lipid rafts triggers insulin-mimetic signaling in rat adipocytes. Arch. Biochem. Biophys. 408,7–16.

    PubMed  CAS  Google Scholar 

  54. Burger, R., M, and Lowenstein, J., M. (1975). 5′-Nucleotidase from smooth muscle of small intestine and from brain. Inhibition of nucleotides. Biochemistry 14, 2362–2366.

    PubMed  CAS  Google Scholar 

  55. Spychala, J., Madrid-Marina, V., Nowak, P. J., and Fox, I. H. (1989). AMP and IMP dephosphorylation by soluble high-and low-Km 5′-nucleotidases. Am. J. Physiol. 256, E386–E391.

    PubMed  CAS  Google Scholar 

  56. Naito, Y., and Lowenstein, J., M. (1981). 5′-Nucleotidase from rat heart. Biochemistry 20, 5188–5194.

    PubMed  CAS  Google Scholar 

  57. Resta, R., Yamashita, Y., and Thompson, L. F. (1998). Ecto-enzyme and signaling functions of lymphocyte CD73. Immunol. Rev. 161, 95–109.

    PubMed  CAS  Google Scholar 

  58. Nemoto, E., Kunii, R., Tada, H., Tsubahara, T., Ishihata, H., and Shimauchi, H. (2004). Expression of CD73/ecto-5′-nucleotidase on human gingival fibroblasts and contribution to the inhibition of interleukin-1?-induced granulocyte-macrophage colony stimulating factor production. J. Periodontal Res. 39, 10–19.

    PubMed  CAS  Google Scholar 

  59. Duarte-Araujo, M., Nascimento, C., Alexandrina Timoteo, M., Magalhaes-Cardoso, T., and Correia-de-Sa, P. (2004). Dual effects of adenosine on acetylcholine release from my enteric motoneurons are mediated by junctional facilitatory A(2A) and extrajunctional inhibitory A(1) receptors. Br. J. Pharmacol. 141, 925–934.

    PubMed  CAS  Google Scholar 

  60. Spychala, J. (2000). Tumor-promoting functions of adenosine. Pharmacol. Ther. 87, 161–173.

    PubMed  CAS  Google Scholar 

  61. Headrick, J. P., Hack, B., and Ashton, K. J. (2003). Acute adenosinergic cardio-protection in ischemic-reperfused hearts. Am. J. Physiol. Heart Circ. Physiol. 285, H1797–H1818.

    PubMed  CAS  Google Scholar 

  62. Kitakaze, M., Minamino, T., Node, K., et al. (1999). Adenosine and cardioprotection in the diseased heart. Jpn. Circ. J. 63, 231–243.

    PubMed  CAS  Google Scholar 

  63. Airas, L., Niemela, J., and Jalkanen, S. (2000). CD73 engagement promotes lymphocyte binding to endothelial cells via a lymphocyte function-associated antigen-1-dependent mechanism. J. Immunol. 165, 5411–5417.

    PubMed  CAS  Google Scholar 

  64. Skladanowski, A. C., and Newby, A. C. (1990). Partial purification and properties of an AMP-specific soluble 5′-nucleotidase from pigeon heart. Biochem. J. 268, 117–122.

    PubMed  CAS  Google Scholar 

  65. Yamazaki, Y., Truong, V. L., and Lowenstein, J. M. (1991). 5′-Nucleotidase-I from rabbit heart. Biochemistry 30, 1503–1509.

    PubMed  CAS  Google Scholar 

  66. Sala-Newby, G. B., Skladanowski, A. C., and Newby, A. C. (1999). The mechanism of adenosine formation in cells. Cloning of cytosolic 5′-nucleotidase-I. J.Biol. Chem. 274, 17,789–17,793.

    PubMed  CAS  Google Scholar 

  67. Hunsucker, S. A., Spychala, J., and Mitchell, B. S. (2001). Human cytosolic 5′-nucleotidase I: characterization and role in nucleoside analog resistance. J. Biol. Chem. 276, 10,498–10,504.

    PubMed  CAS  Google Scholar 

  68. Darvish, A., and Metting, P. J. (1993). Purification and regulation of an AMP-specific cytosolic 5′-nucleotidase from dog heart. Am. J. Physiol. 264, H1528–H1534.

    PubMed  CAS  Google Scholar 

  69. Garvey, E. P., Lowen, G. T., and Almond, M. R. (1998). Nucleotide and nucleoside analogues as inhibitors of cytosolic 5′-nucleotidase I from heart. Biochemistry 37, 9043–9051.

    PubMed  CAS  Google Scholar 

  70. Skladanowski, A. C., Hoffmann, C. S., Krass, J. D., Makarewicz, W., and Jastorff, B. (1995). Different substrate specificity of two isozymes of cytosolic 5′-nucleotidase from rabbit heart. Adv. Exp. Med. Biol. 370, 617–621.

    Google Scholar 

  71. Skladanowski, A. C., Smolenski, R. T., Tavenier, M., de Jong, J. W., Yacoub, M. H.,and Seymour, A. M. (1996). Soluble forms of 5?-nucleotidase in rat and human heart. Am. J. Physiol. 270, H1493–H1500.

    PubMed  CAS  Google Scholar 

  72. Truong, V. L., Collinson, A. R., and Lowenstein, J. M. (1988). 5′-Nucleotidase in rat heart. Evidence for the occurrence of two soluble enzymes with different substrate specificities. Biochem. J. 253, 117–121.

    PubMed  CAS  Google Scholar 

  73. Sala-Newby, G. B., Freeman, N. V., Skladanowski, A. C., and Newby, A. C. (2000). Distinct roles for recombinant cytosolic 5′-nucleotidase-I and-II in AMP and IMP catabolism in COS-7 and H9c2 rat myoblast cell lines. J. Biol. Chem. 275, 11,666–11,671.

    PubMed  CAS  Google Scholar 

  74. Itoh, R., Mitsui, A., and Tsushima, K. (1967). 5′-Nucleotidase of chicken liver. Biochim. Biophys. Acta 146, 151–159.

    PubMed  CAS  Google Scholar 

  75. Oka, J., Matsumoto, A., Hosokawa, Y., Inoue, S. (1994). Molecular cloning of human cytosolic purine 5′-nucleotidase. Biochem. Biophys. Res. Commun. 205, 917–922.

    PubMed  CAS  Google Scholar 

  76. Spychala, J., Chen, V., Oka, J., and Mitchell, B. S. (1999). ATP and phosphate reciprocally affect subunit association of human recombinant high K 5′-nucleotidase. Role of C-terminal polyglutamic acid tract in subunit association and catalytic activity. Eur. J. Biochem. 259, 851–858.

    PubMed  CAS  Google Scholar 

  77. Spychala, J., Madrid-Marina, V., and Fox, I. H. (1988). High Km soluble 5′-nucleotidase from human placenta. Properties and allosteric regulation by IMP and ATP. J. Biol. Chem. 263, 18,759–18,765.

    PubMed  CAS  Google Scholar 

  78. Van den Berghe, G., Van Pottersberghe, C., and Hers, H.-G. (1977). A kinetic study of the soluble 5′-nucleotidase of rat liver. Biochem. J. 162, 611–616.

    PubMed  Google Scholar 

  79. Itoh, R. (1993). IMP-GMP 5′-nucleotidase. Comp. Biochem. Physiol. [B] 105, 13–19.

    CAS  Google Scholar 

  80. Pinto, R., M, Canales, J., Gunther, S., M, A, and Sillero, A. (1986). Diadenosine tetraphosphate activates cytosol 5′-nucleotidase. Biochem. Biophys. Res. Commun. 138, 261–267.

    PubMed  CAS  Google Scholar 

  81. Bontemps, F., Van den Berghe, G., and Hers, H.-G. (1988). 5′-Nucleotidase activities in human erythrocytes. Identification of purine 5–-nucleotidase stimulated by ATP and glycerate 2,3-bisphosphate. Biochem. J. 250, 687–696.

    PubMed  CAS  Google Scholar 

  82. Fridland, A., Connelly, M. C., and Robbins, T. J. (1986). Tiazofurin metabolism in human lymphoblastoid cells: evidence for phosphorylation by adenosine kinase and 5′-nucleotidase. Cancer Res. 46, 532–537.

    PubMed  CAS  Google Scholar 

  83. Johnson, M. A., and Fridland, A. (1989). Phosphorylation of 2′,3′-Dideoxyinosine by cytosolic 5′-nucleotidase of human lymphoid cells. Mol. Pharmacol. 36, 291–295.

    PubMed  CAS  Google Scholar 

  84. Baiocchi, C., Pesi, R., Camici, M., Itoh, R., and Tozzi, M. G. (1996). Mechanism of reaction catalyzed by cytosolic 5′-nucleotidase/phosphotransferase: formation of a phosphorylated intermediate. Biochem. J. 317, 797–801.

    PubMed  CAS  Google Scholar 

  85. Pesi, R., Turriani, M., Allegrini, S., et al. (1994). The bifunctional cytosolic 5′-nucleotidase: regulation of the phosphotransferase and nucleotidase activities. Arch. Biochem. Biophys. 312, 75–80.

    PubMed  CAS  Google Scholar 

  86. Dragon, S., Hille, R., Gotz, R., and Baumann, R. (1998). Adenosine 3′:5′-cyclic monophosphate (cAMP)-inducible pyrimidine 5′-nucleotidase and pyrimidine ucleotide metabolism of chick embryonic erythrocytes. Blood 91, 3052–3058.

    PubMed  CAS  Google Scholar 

  87. Paglia, E. D., and Valentine, W. N. (1975). Characteristics of pyrimidine-specific 5′-nucleotidase in human erythrocytes. J. Biol. Chem. 250, 7973–7979.

    PubMed  CAS  Google Scholar 

  88. Swallow, D. M., Turner, V. S., and Hopkinson, D. A. (1983). Isozymes of rodent 5′-nucleotidase: evidence for two independent structural loci Umph-1 and Umph-2. Ann. Hum. Genet. 47(pt. 1), 9–17.

    PubMed  CAS  Google Scholar 

  89. Beutler, E., and West, C. (1982). Tissue distribution of pyrimidine-5′-nucleotidase. Biochem. Med. 27, 334–341.

    PubMed  CAS  Google Scholar 

  90. Lu, M. M., Chen, F., Gitler, A., et al. (2000). Cloning and expression analysis of murine lupin, a member of a novel gene family that is conserved through evolution and associated with lupus inclusions. Dev. Genes Evol. 210, 512–517.

    PubMed  CAS  Google Scholar 

  91. Marinaki, A. M., Escuredo, E., Duley, J. A., et al. (2001). Genetic basis of hemolytic anemia caused by pyrimidine 5′ nucleotidase deficiency. Blood 97, 3327–3332.

    PubMed  CAS  Google Scholar 

  92. Kanno, H., Takizawa, T., Miwa, S., and Fujii, H. (2004). Molecular basis of Japanese variants of pyrimidine 5′-nucleotidase deficiency. Br. J. Haematol. 126, 265–271.

    PubMed  CAS  Google Scholar 

  93. Rees, D. C., Duley, J. A., and Marinaki, A. M. (2003). Pyrimidine 5′ nucleotidase deficiency. Br. J. Haematol. 120, 375–383.

    PubMed  CAS  Google Scholar 

  94. Amici, A., and Magni, G. (2002). Human erythrocyte pyrimidine 5′-nucleotidase, PN-1. Arch. Biochem. Biophys. 397, 184–190.

    PubMed  CAS  Google Scholar 

  95. Fritzson, P., and, and Smith, I. (1971). A new nucleotidase of rat liver with activity toward 3′-and 5′-nucleotides. Biochim. Biophys. Acta 235, 128–141.

    PubMed  CAS  Google Scholar 

  96. Magnusson, G. (1971). Deoxyribonucleotide phosphatase from rat liver and cultured mouse fibroblasts. Eur. J. Biochem. 20, 225–230.

    PubMed  CAS  Google Scholar 

  97. Hoglund, L., and Reichard, P. (1990). Cytoplasmic 5′(3′)-nucleotidase from human placenta. J. Biol. Chem. 265, 6589–6595.

    PubMed  CAS  Google Scholar 

  98. Amici, A., Emanuelli, M., Ferretti, E., Raffaelli, N., Ruggieri, S., and Magni, G. (1994). Homogeneous pyrimidine nucleotidase from human erythrocytes:enzymic and molecular properties. Biochem. J. 304, 987–992.

    PubMed  CAS  Google Scholar 

  99. Rampazzo, C., Johansson, M., Gallinaro, L., et al. (2000). Mammalian 5′(3′)-deoxyribonucleotidase, cDNA cloning, and overexpression of the enzyme in Escherichia coli and mammalian cells. J. Biol. Chem. 275, 5409–5415.

    PubMed  CAS  Google Scholar 

  100. Amici, A., Emanuelli, M., Ruggieri, S., Raffaelli, N., and Magni, G. (2002). Kinetic evidence for covalent phosphoryl-enzyme intermediate in phosphotrans-ferase activity of human red cell pyrimidine nucleotidases. Meth. Enzymol. 354, 149–159.

    PubMed  CAS  Google Scholar 

  101. Mazzon, C., Rampazzo, C., Scaini, M. C., et al. (2003). Cytosolic and mitochon-drial deoxyribonucleotidases: activity with substrate analogs, in hibitors andimplications for therapy. Biochem. Pharmacol. 66, 471–479.

    PubMed  CAS  Google Scholar 

  102. Rampazzo, C., Gallinaro, L., Milanesi, E., Frigimelica, E., Reichard, P., and Bianchi, V. (2000). A deoxyribonucleotidase in mitochondria: involvement in regulation of dNTP pools and possible link to genetic disease. Proc. Natl. Acad. Sci. U. S. A. 97, 8239–8244.

    PubMed  CAS  Google Scholar 

  103. Rampazzo, C., Ferraro, P., Pontarin, G., Fabris, S., Reichard, P., and Bianchi, V. (2004). Mitochondrial deoxyribonucleotides, pool sizes, synthesis, and regulation. J. Biol. Chem. 279, 17,019–17,026.

    PubMed  CAS  Google Scholar 

  104. Gallinaro, L., Crovatto, K., Rampazzo, C., et al. (2002). Human mitochondrial 5′-deoxyribonucleotidase. Overproduction in cultured cells and functional aspects. J. Biol. Chem. 277, 35,080–35,087.

    PubMed  CAS  Google Scholar 

  105. Galmarini, C. M., Mackey, J. R., and Dumontet, C. (2002). Nucleoside analogues and nucleobases in cancer treatment. Lancet Oncol. 3, 415–424.

    PubMed  CAS  Google Scholar 

  106. Bergman, A. M., Pinedo, H. M., and Peters, G. J. (2002). Determinants of resistance to 2′,2′-difluorodeoxycytidine (gemcitabine). Drug. Resist. Updat. 5, 19–33.

    PubMed  CAS  Google Scholar 

  107. van der Wilt, C. L., Kroep, J. R., Loves, W. J., et al. (2003). Expression of deoxy-cytidine kinase in leukaemic cells compared with solid tumour cell lines, liver metastases and normal liver. Eur. J. Cancer 39, 691–697.

    PubMed  Google Scholar 

  108. Schirmer, M., Stegmann, A. P., Geisen, F., and Konwalinka, G. (1998). Lack of cross-resistance with gemcitabine and cytarabine in cladribine-resistant HL60 cells with elevated 5′-nucleotidase activity. Exp. Hematol. 26, 1223–1228.

    PubMed  CAS  Google Scholar 

  109. Carson, D. A., Carrera, C. J., Wasson, D. B., and Iizasa, T. (1991). Deoxyadenosine-resistant human T-lymphoblasts with elevated 5–-nucleotidase activity. Biochim. Biophys. Acta 1091, 22–28.

    PubMed  CAS  Google Scholar 

  110. Dumontet, C., Fabianowska-Majewska, K., Mantincic, D., et al. (1999). Common resistance mechanisms to deoxynucleoside analogues in variants of the human erythroleukaemic line K562. Br. J. Haematol. 106, 78–85.

    PubMed  CAS  Google Scholar 

  111. Lotfi, K., Mansson, E., Chandra, J., et al. (2001). Pharmacological basis for cladribine resistance in a human acute T lymphoblastic leukaemia cell line selected for resistance to etoposide. Br. J. Haematol. 113, 339–346.

    PubMed  CAS  Google Scholar 

  112. Mohammad, R. M., Beck, F. W., Katato, K., Hamdy, N., Wall, N., and Al-Katib, A. (1998). Potentiation of 2-chlorodeoxyadenosine activity by bryostatin 1 in the resistant chronic lymphocytic leukemia cell line (WSU-CLL): association with increased ratios of dCK/5′-NT and Bax/Bcl-2. Biol. Chem. 379, 1253–1261.

    PubMed  CAS  Google Scholar 

  113. Kawasaki, H., Carrera, C. J., Piro, L. D., Saven, A., Kipps, T. J., and Carson, D. A. (1993). Relationship of deoxycytidine kinase and cytoplasmic 5′-nucleotidase to the chemotherapeutic efficacy of 2-chlorodeoxyadenosine. Blood 81, 597–601.

    PubMed  CAS  Google Scholar 

  114. Galmarini, C. M., Thomas, X., Calvo, F., et al. (2002). Potential mechanisms of resistance to cytarabine in AML patients. Leuk. Res. 26, 621–629.

    PubMed  CAS  Google Scholar 

  115. Keller, P. M., McKee, S.A., and Fyfe, J.A. (1985). Cytoplasmic 5′-nucleotidase catalyzes acyclovir phosphorylation. J. Biol. Chem. 260, 8664–8667.

    PubMed  CAS  Google Scholar 

  116. Saunders, P. P., Spindler, C. D., Tan, M. T., Alvarez, E., and Robins, R. K. (1990). Tiazofurin is phosphorylated by three enzymes from Chinese hamster ovary cells. Cancer Res. 50, 5269–5274.

    PubMed  CAS  Google Scholar 

  117. Jager, W., Salamon, A., and Szekeres, T. (2002). Metabolism of the novel IMP dehydrogenase inhibitor benzamide riboside. Curr. Med. Chem. 9, 781–786.

    PubMed  CAS  Google Scholar 

  118. Agbaria, R., Mullen, C. A., Hartman, N. R., et al. (1994). Effects of IMP dehydrogenase inhibitors on the phosphorylation of ganciclovir in MOLT-4 cells before and after herpes simplex virus thymidine kinase gene transduction. Mol. Pharmacol. 45, 777–782.

    PubMed  CAS  Google Scholar 

  119. Smee, D. F., Campbell, N. L., and Matthews, T. R. (1985). Comparative anti-herpesvirus activities of 9-(1,3-dihydroxy-2-propoxymethyl)guanine, acyclovir,and two 2′-fluoropyrimidine nucleosides. Antiviral Res. 5, 259–267.

    PubMed  CAS  Google Scholar 

  120. Balzarini, J., Lee, C. K., Herdewijn, P., and Declercq, E. (1991). Mechanism of the potentiating effect of ribavirin on the activity of 2–,3–-dideoxyinosine against human immunodeficiency virus. J. Biol. Chem. 266, 21,509–21,514.

    PubMed  CAS  Google Scholar 

  121. Razmara, M., Eriksson, S., and Albertioni, F. (2003). 5′-Nucleotidases levels measured in peripheral blood cells from patients with chronic and acute leukemia. In Abstracts, Joint 11th International and 9th European Symposium on Purines and Pyrimidines in Man, Egmond aan Zee, Peters, G. J., ed., June 9-13. Abstract P82, Drukkerij Peters and VU University Medical Center, Amsterdam, The Netherlands.

    Google Scholar 

  122. Galmarini, C. M., Cros, E., Graham, K., Thomas, X., Mackey, J. R., and Dumontet, C. (2004). 5-(3)-Nucleotidase mRNA levels in blast cells are a prognostic factor in acute myeloid leukemia patients treated with cytarabine. Haematologica 89, 617–619.

    PubMed  CAS  Google Scholar 

  123. Lewis, W. A., and Dalakas, M. C. (1995). Mitochondrial toxicity of antiviral drugs. Nat. Med. 1, 417–422.

    PubMed  CAS  Google Scholar 

  124. Gandhi, V., and Plunkett, W. (2002). Cellular and clinical pharmacology of flu-darabine. Clin. Pharmacokinet. 41, 93–103.

    PubMed  CAS  Google Scholar 

  125. Zimmermann, H. (1992). 5′-nucleotidase: molecular structure and functional aspects. Biochem. J. 285, 345–365.

    PubMed  CAS  Google Scholar 

  126. Resta, R., Hooker, S. W., Hansen, K. R., et al. (1993). Murine ecto-5′-nucleotidase (CD73)—cDNA cloning and tissue distribution. Gene 133, 171–177.

    PubMed  CAS  Google Scholar 

  127. Allegrini, S., Pesi, R., Tozzi, M. G., Fiol, C. J., Johnson, R. B., and Eriksson, S. (1997). Bovine cytosolic IMP/GMP-specific 5–-nucleotidase: cloning and expression of active enzyme in Escherichia coli. Biochem. J. 328, 483–487.

    PubMed  CAS  Google Scholar 

  128. Amici, A., Emanuelli, M., Raffaelli, N., Ruggieri, S., Saccucci, F., and Magni, G. (2000). Human erythrocyte pyrimidine 5-nucleotidase, PN-I, is identical to p36, a protein associated to lupus inclusion formation in response to α-interferon. Blood 96, 1596–1598.

    PubMed  CAS  Google Scholar 

  129. Itoh, R., and Oka, J. (1985). Evidence for existence of a cytosol 5′-nucleotidase in chicken heart: comparison of some properties of heart and liver enzymes. Comp. Biochem. Physiol. 81B, 159–163.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Hunsucker, S.A., Mitchell, B.S., Spychala, J. (2006). Nucleotidases and Nucleoside Analog Cytotoxicity. In: Peters, G.J. (eds) Deoxynucleoside Analogs In Cancer Therapy. Cancer Drug Discovery and Development. Humana Press. https://doi.org/10.1007/978-1-59745-148-2_4

Download citation

Publish with us

Policies and ethics