Skip to main content

Skeletal Muscle Metabolomics for Metabolic Phenotyping and Biomarker Discovery

  • Chapter
  • First Online:

Part of the book series: Methods in Physiology ((METHPHYS))

Abstract

Metabolism is the process of chemical transformation within a biological context. Metabolites comprise all the small-molecule (<1 kDa) substrates and end products of metabolism, including sugars, nucleotides, lipids, amino acids, organic acids, ketones, aldehydes, amines, alkaloids, phenols, steroids, small peptides, xenobiotics, and drugs. Similar in scope to other high-throughput “omics” technologies, the aim of metabolomics is to comprehensively and unbiasedly detect, identify, and quantify the metabolome, i.e., the full complement of small molecules found in cells, biological fluids, or tissues. Here we present a brief introduction of how skeletal muscle metabolomics can be used for metabolic phenotyping and biomarker discovery.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Holmes, E., Wilson, I. D., & Nicholson, J. K. (2008). Metabolic phenotyping in health and disease. Cell, 134, 714–717.

    Article  CAS  PubMed  Google Scholar 

  2. Patti, G. J., Yanes, O., & Siuzdak, G. (2012). Innovation: Metabolomics: The apogee of the omics trilogy. Nature Reviews Molecular Cell Biology, 13, 263–269.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. van der Greef, J., van Wietmarschen, H., van Ommen, B., & Verheij, E. (2013). Looking back into the future: 30 years of metabolomics at TNO. Mass Spectrometry Reviews, 32, 399–415.

    Article  PubMed  CAS  Google Scholar 

  4. Nicholson, J. K. (2006). Global systems biology, personalized medicine and molecular epidemiology. Molecular Systems Biology, 2, 52.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Ramautar, R., Berger, R., van der Greef, J., & Hankemeier, T. (2013). Human metabolomics: Strategies to understand biology. Current Opinion in Chemical Biology, 17, 841–846.

    Article  CAS  PubMed  Google Scholar 

  6. Newgard, C. B. (2017). Metabolomics and metabolic diseases: Where do we stand? Cell Metabolism, 25, 43–56.

    Article  CAS  PubMed  Google Scholar 

  7. McCarthy, M. I., Abecasis, G. R., Cardon, L. R., Goldstein, D. B., Little, J., Ioannidis, J. P., & Hirschhorn, J. N. (2008). Genome-wide association studies for complex traits: Consensus, uncertainty and challenges. Nature Reviews Genetics, 9, 356–369.

    Article  CAS  PubMed  Google Scholar 

  8. Samani, N. J., Erdmann, J., Hall, A. S., Hengstenberg, C., Mangino, M., Mayer, B., Dixon, R. J., Meitinger, T., Braund, P., Wichmann, H. E., Barrett, J. H., Konig, I. R., Stevens, S. E., Szymczak, S., Tregouet, D. A., Iles, M. M., Pahlke, F., Pollard, H., Lieb, W., Cambien, F., Fischer, M., Ouwehand, W., Blankenberg, S., Balmforth, A. J., Baessler, A., Ball, S. G., Strom, T. M., Braenne, I., Gieger, C., Deloukas, P., Tobin, M. D., Ziegler, A., Thompson, J. R., Schunkert, H., & Wtccc, and the Cardiogenics Consortium. (2007). Genomewide association analysis of coronary artery disease. The New England Journal of Medicine, 357, 443–453.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Todd, J. A., Walker, N. M., Cooper, J. D., Smyth, D. J., Downes, K., Plagnol, V., Bailey, R., Nejentsev, S., Field, S. F., Payne, F., Lowe, C. E., Szeszko, J. S., Hafler, J. P., Zeitels, L., Yang, J. H., Vella, A., Nutland, S., Stevens, H. E., Schuilenburg, H., Coleman, G., Maisuria, M., Meadows, W., Smink, L. J., Healy, B., Burren, O. S., Lam, A. A., Ovington, N. R., Allen, J., Adlem, E., Leung, H. T., Wallace, C., Howson, J. M., Guja, C., Ionescu-Tirgoviste, C., Genetics of Type 1 Diabetes in F, Simmonds, M. J., Heward, J. M., Gough, S. C., Wellcome Trust Case Control C, Dunger, D. B., Wicker, L. S., & Clayton, D. G. (2007). Robust associations of four new chromosome regions from genome-wide analyses of type 1 diabetes. Nature Genetics, 39, 857–864.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Zeggini, E., Scott, L. J., Saxena, R., Voight, B. F., Marchini, J. L., Hu, T., de Bakker, P. I., Abecasis, G. R., Almgren, P., Andersen, G., Ardlie, K., Bostrom, K. B., Bergman, R. N., Bonnycastle, L. L., Borch-Johnsen, K., Burtt, N. P., Chen, H., Chines, P. S., Daly, M. J., Deodhar, P., Ding, C. J., Doney, A. S., Duren, W. L., Elliott, K. S., Erdos, M. R., Frayling, T. M., Freathy, R. M., Gianniny, L., Grallert, H., Grarup, N., Groves, C. J., Guiducci, C., Hansen, T., Herder, C., Hitman, G. A., Hughes, T. E., Isomaa, B., Jackson, A. U., Jorgensen, T., Kong, A., Kubalanza, K., Kuruvilla, F. G., Kuusisto, J., Langenberg, C., Lango, H., Lauritzen, T., Li, Y., Lindgren, C. M., Lyssenko, V., Marvelle, A. F., Meisinger, C., Midthjell, K., Mohlke, K. L., Morken, M. A., Morris, A. D., Narisu, N., Nilsson, P., Owen, K. R., Palmer, C. N., Payne, F., Perry, J. R., Pettersen, E., Platou, C., Prokopenko, I., Qi, L., Qin, L., Rayner, N. W., Rees, M., Roix, J. J., Sandbaek, A., Shields, B., Sjogren, M., Steinthorsdottir, V., Stringham, H. M., Swift, A. J., Thorleifsson, G., Thorsteinsdottir, U., Timpson, N. J., Tuomi, T., Tuomilehto, J., Walker, M., Watanabe, R. M., Weedon, M. N., Willer, C. J., Wellcome Trust Case Control C, Illig, T., Hveem, K., Hu, F. B., Laakso, M., Stefansson, K., Pedersen, O., Wareham, N. J., Barroso, I., Hattersley, A. T., Collins, F. S., Groop, L., McCarthy, M. I., Boehnke, M., & Altshuler, D. (2008). Meta-analysis of genome-wide association data and large-scale replication identifies additional susceptibility loci for type 2 diabetes. Nature Genetics, 40, 638–645.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Gieger, C., Geistlinger, L., Altmaier, E., Hrabe de Angelis, M., Kronenberg, F., Meitinger, T., Mewes, H. W., Wichmann, H. E., Weinberger, K. M., Adamski, J., Illig, T., & Suhre, K. (2008). Genetics meets metabolomics: A genome-wide association study of metabolite profiles in human serum. PLoS Genetics, 4, e1000282.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Gates, S. C., & Sweeley, C. C. (1978). Quantitative metabolic profiling based on gas chromatography. Clinical Chemistry, 24, 1663–1673.

    CAS  PubMed  Google Scholar 

  13. Gohlke, R. S., & McLafferty, F. W. (1993). Early gas chromatography/mass spectrometry. Journal of the American Society for Mass Spectrometry, 4, 367–371.

    Article  CAS  PubMed  Google Scholar 

  14. Kell, D. B., & Oliver, S. G. (2016). The metabolome 18 years on: A concept comes of age. Metabolomics, 12, 148.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Rosato, A., Tenori, L., Cascante, M., De Atauri Carulla, P. R., Martins Dos Santos, V. A. P., & Saccenti, E. (2018). From correlation to causation: Analysis of metabolomics data using systems biology approaches. Metabolomics, 14, 37.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Zamboni, N., Saghatelian, A., & Patti, G. J. (2015). Defining the metabolome: Size, flux, and regulation. Molecular Cell, 58, 699–706.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Horning, E. C., & Horning, M. G. (1971). Metabolic profiles: Gas-phase methods for analysis of metabolites. Clinical Chemistry, 17, 802–809.

    CAS  PubMed  Google Scholar 

  18. Mamer, O. A., Crawhall, J. C., & Tjoa, S. S. (1971). The identification of urinary acids by coupled gas chromatography-mass spectrometry. Clinica Chimica Acta, 32, 171–184.

    Article  CAS  Google Scholar 

  19. Pauling, L., Robinson, A. B., Teranishi, R., & Cary, P. (1971). Quantitative analysis of urine vapor and breath by gas-liquid partition chromatography. Proceedings of the National Academy of Sciences of the United States of America, 68, 2374–2376.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Hoult, D. I., Busby, S. J., Gadian, D. G., Radda, G. K., Richards, R. E., & Seeley, P. J. (1974). Observation of tissue metabolites using 31P nuclear magnetic resonance. Nature, 252, 285–287.

    Article  CAS  PubMed  Google Scholar 

  21. Radda, G. K., & Seeley, P. J. (1979). Recent studies on cellular metabolism by nuclear magnetic resonance. Annual Review of Physiology, 41, 749–769.

    Article  CAS  PubMed  Google Scholar 

  22. Dunn, W. B., Broadhurst, D., Begley, P., Zelena, E., Francis-McIntyre, S., Anderson, N., Brown, M., Knowles, J. D., Halsall, A., Haselden, J. N., Nicholls, A. W., Wilson, I. D., Kell, D. B., Goodacre, R., & Human Serum Metabolome Consortium. (2011). Procedures for large-scale metabolic profiling of serum and plasma using gas chromatography and liquid chromatography coupled to mass spectrometry. Nature Protocols, 6, 1060–1083.

    Article  CAS  PubMed  Google Scholar 

  23. Wollenberger, A., Ristau, O., & Schoffa, G. (1960). A simple technic for extremely rapid freezing of large pieces of tissue. Pflügers Archiv für die Gesamte Physiologie des Menschen und der Tiere, 270, 399–412.

    Article  CAS  PubMed  Google Scholar 

  24. Haid, M., Muschet, C., Wahl, S., Romisch-Margl, W., Prehn, C., Moller, G., & Adamski, J. (2018). Long-term stability of human plasma metabolites during storage at −80 degrees C. Journal of Proteome Research, 17, 203–211.

    Article  CAS  PubMed  Google Scholar 

  25. Issaq, H. J., Van, Q. N., Waybright, T. J., Muschik, G. M., & Veenstra, T. D. (2009). Analytical and statistical approaches to metabolomics research. Journal of Separation Science, 32, 2183–2199.

    Article  CAS  PubMed  Google Scholar 

  26. Ellis, D. I., Dunn, W. B., Griffin, J. L., Allwood, J. W., & Goodacre, R. (2007). Metabolic fingerprinting as a diagnostic tool. Pharmacogenomics, 8, 1243–1266.

    Article  CAS  PubMed  Google Scholar 

  27. Illig, T., Gieger, C., Zhai, G., Romisch-Margl, W., Wang-Sattler, R., Prehn, C., Altmaier, E., Kastenmuller, G., Kato, B. S., Mewes, H. W., Meitinger, T., de Angelis, M. H., Kronenberg, F., Soranzo, N., Wichmann, H. E., Spector, T. D., Adamski, J., & Suhre, K. (2010). A genome-wide perspective of genetic variation in human metabolism. Nature Genetics, 42, 137–141.

    Article  CAS  PubMed  Google Scholar 

  28. Griffiths, W. J., Karu, K., Hornshaw, M., Woffendin, G., & Wang, Y. (2007). Metabolomics and metabolite profiling: Past heroes and future developments. European Journal of Mass Spectrometry (Chichester), 13, 45–50.

    Article  CAS  Google Scholar 

  29. Zhao, X., Fritsche, J., Wang, J., Chen, J., Rittig, K., Schmitt-Kopplin, P., Fritsche, A., Haring, H. U., Schleicher, E. D., Xu, G., & Lehmann, R. (2010). Metabonomic fingerprints of fasting plasma and spot urine reveal human pre-diabetic metabolic traits. Metabolomics, 6, 362–374.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Lawton, K. A., Berger, A., Mitchell, M., Milgram, K. E., Evans, A. M., Guo, L., Hanson, R. W., Kalhan, S. C., Ryals, J. A., & Milburn, M. V. (2008). Analysis of the adult human plasma metabolome. Pharmacogenomics, 9, 383–397.

    Article  CAS  PubMed  Google Scholar 

  31. Ohta, T., Masutomi, N., Tsutsui, N., Sakairi, T., Mitchell, M., Milburn, M. V., Ryals, J. A., Beebe, K. D., & Guo, L. (2009). Untargeted metabolomic profiling as an evaluative tool of fenofibrate-induced toxicology in Fischer 344 male rats. Toxicologic Pathology, 37, 521–535.

    Article  CAS  PubMed  Google Scholar 

  32. Sreekumar, A., Poisson, L. M., Rajendiran, T. M., Khan, A. P., Cao, Q., Yu, J., Laxman, B., Mehra, R., Lonigro, R. J., Li, Y., Nyati, M. K., Ahsan, A., Kalyana-Sundaram, S., Han, B., Cao, X., Byun, J., Omenn, G. S., Ghosh, D., Pennathur, S., Alexander, D. C., Berger, A., Shuster, J. R., Wei, J. T., Varambally, S., Beecher, C., & Chinnaiyan, A. M. (2009). Metabolomic profiles delineate potential role for sarcosine in prostate cancer progression. Nature, 457, 910–914.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Azur, M. J., Stuart, E. A., Frangakis, C., & Leaf, P. J. (2011). Multiple imputation by chained equations: What is it and how does it work? International Journal of Methods in Psychiatric Research, 20, 40–49.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Croghan, C. W., & Egeghy, P. P. (2003). Methods of dealing with values below the limit of detection using SAS. St. Petersburg, FL: Southeastern SAS User Group.

    Google Scholar 

  35. Gromski, P. S., Xu, Y., Kotze, H. L., Correa, E., Ellis, D. I., Armitage, E. G., Turner, M. L., & Goodacre, R. (2014). Influence of missing values substitutes on multivariate analysis of metabolomics data. Metabolites, 4, 433–452.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Hrydziuszko, O., & Viant, M. R. (2012). Missing values in mass spectrometry based metabolomics: An undervalued step in the data processing pipeline. Metabolomics, 8, 161–174.

    Article  CAS  Google Scholar 

  37. Lubin, J. H., Colt, J. S., Camann, D., Davis, S., Cerhan, J. R., Severson, R. K., Bernstein, L., & Hartge, P. (2004). Epidemiologic evaluation of measurement data in the presence of detection limits. Environmental Health Perspectives, 112, 1691–1696.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Xia, J., Psychogios, N., Young, N., & Wishart, D. S. (2009). MetaboAnalyst: A web server for metabolomic data analysis and interpretation. Nucleic Acids Research, 37, W652–W660.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Brereton, R. G., & Lloyd, G. R. (2014). Partial least squares discriminant analysis: Taking the magic away. Journal of Chemometrics, 28, 213–225.

    Article  CAS  Google Scholar 

  40. Efron, B., & Tibshirani, R. (1986). Bootstrap methods for standard errors, confidence intervals, and other measures of statistical accuracy. Statistical Science, 1, 54–75.

    Article  Google Scholar 

  41. Eriksson, L., Trygg, J., & Wold, S. (2014). A chemometrics toolbox based on projections and latent variables. Journal of Chemometrics, 28, 332–346.

    Article  CAS  Google Scholar 

  42. Grissa, D., Petera, M., Brandolini, M., Napoli, A., Comte, B., & Pujos-Guillot, E. (2016). Feature selection methods for early predictive biomarker discovery using untargeted metabolomic data. Frontiers in Molecular Biosciences, 3, 30.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Gromski, P. S., Muhamadali, H., Ellis, D. I., Xu, Y., Correa, E., Turner, M. L., & Goodacre, R. (2015). A tutorial review: Metabolomics and partial least squares-discriminant analysis – A marriage of convenience or a shotgun wedding. Analytica Chimica Acta, 879, 10–23.

    Article  CAS  PubMed  Google Scholar 

  44. Gromski, P. S., Xu, Y., Correa, E., Ellis, D. I., Turner, M. L., & Goodacre, R. (2014). A comparative investigation of modern feature selection and classification approaches for the analysis of mass spectrometry data. Analytica Chimica Acta, 829, 1–8.

    Article  CAS  PubMed  Google Scholar 

  45. Hastie, T., Tibshirani, R., & Friedman, J. (2009). The elements of statistical learning. New York: Springer.

    Book  Google Scholar 

  46. Jolliffe, I. T. (2002). Principal component analysis. New York: Springer.

    Google Scholar 

  47. Kastenmuller, G., Romisch-Margl, W., Wagele, B., Altmaier, E., & Suhre, K. (2011). metaP-server: A web-based metabolomics data analysis tool. Journal of Biomedicine and Biotechnology, 2011, 839862.

    Article  PubMed  CAS  Google Scholar 

  48. Ren, S., Hinzman, A. A., Kang, E. L., Szczesniak, R. D., & Lu, L. J. (2015). Computational and statistical analysis of metabolomics data. Metabolomics, 11, 1492–1513.

    Article  CAS  Google Scholar 

  49. Saccenti, E., Hoefsloot, H. C. J., Smilde, A. K., Westerhuis, J. A., & Hendriks, M. M. W. B. (2014). Reflections on univariate and multivariate analysis of metabolomics data. Metabolomics, 10, 361–374.

    Article  CAS  Google Scholar 

  50. Shapiro, S. S., & Wilk, M. B. (1965). An analysis of variance test for normality (complete samples). Biometrika, 52, 591–611.

    Article  Google Scholar 

  51. Tautenhahn, R., Patti, G. J., Rinehart, D., & Siuzdak, G. (2012). XCMS online: A web-based platform to process untargeted metabolomic data. Analytical Chemistry, 84, 5035–5039.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Vinaixa, M., Samino, S., Saez, I., Duran, J., Guinovart, J. J., & Yanes, O. (2012). A guideline to univariate statistical analysis for LC/MS-based untargeted metabolomics-derived data. Metabolites, 2, 775–795.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Wold, S., Sjöström, M., & Eriksson, L. (2001). PLS-regression: A basic tool of chemometrics. Chemometrics and Intelligent Laboratory Systems, 58, 109–130.

    Article  CAS  Google Scholar 

  54. Xia, J., Sinelnikov, I. V., Han, B., & Wishart, D. S. (2015). MetaboAnalyst 3.0 – making metabolomics more meaningful. Nucleic Acids Research, 43, W251–W257.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Brereton, R. G. (2006). Consequences of sample size, variable selection, and model validation and optimisation, for predicting classification ability from analytical data. TrAC Trends in Analytical Chemistry, 25, 1103–1111.

    Article  CAS  Google Scholar 

  56. Esbensen, K. H., & Geladi, P. (2010). Principles of proper validation: Use and abuse of re-sampling for validation. Journal of Chemometrics, 24, 168–187.

    Article  CAS  Google Scholar 

  57. Trygg, J., & Wold, S. (2002). Orthogonal projections to latent structures (O-PLS). Journal of Chemometrics, 16, 119–128.

    Article  CAS  Google Scholar 

  58. Westerhuis, J. A., Hoefsloot, H. C. J., Smit, S., Vis, D. J., Smilde, A. K., van Velzen, J. J., van Duijnhoven, J. P. M., & van Dorsten, F. A. (2008). Assessment of PLSDA cross validation. Metabolomics, 4, 81–89.

    Article  CAS  Google Scholar 

  59. Xia, J., Broadhurst, D. I., Wilson, M., & Wishart, D. S. (2013). Translational biomarker discovery in clinical metabolomics: An introductory tutorial. Metabolomics, 9, 280–299.

    Article  CAS  PubMed  Google Scholar 

  60. Vouk, K., Hevir, N., Ribic-Pucelj, M., Haarpaintner, G., Scherb, H., Osredkar, J., Moller, G., Prehn, C., Rizner, T. L., & Adamski, J. (2012). Discovery of phosphatidylcholines and sphingomyelins as biomarkers for ovarian endometriosis. Human Reproduction, 27, 2955–2965.

    Article  CAS  PubMed  Google Scholar 

  61. Chong, J., Soufan, O., Li, C., Caraus, I., Li, S., Bourque, G., Wishart, D. S., & Xia, J. (2018). MetaboAnalyst 4.0: Towards more transparent and integrative metabolomics analysis. Nucleic Acids Research, 46, W486–W494.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Zurlo, F., Larson, K., Bogardus, C., & Ravussin, E. (1990). Skeletal muscle metabolism is a major determinant of resting energy expenditure. The Journal of Clinical Investigation, 86, 1423–1427.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Hargreaves, M. (2000). Skeletal muscle metabolism during exercise in humans. Clinical and Experimental Pharmacology and Physiology, 27, 225–228.

    Article  CAS  PubMed  Google Scholar 

  64. Shearer, J., & Weljie, A. (2014). Biomarkers of skeletal muscle regulation, metabolism and dysfunction. In: Jones, O. A. H. (Ed.), Metabolomics and systems biology in human health and medicine (pp. 157–170). CABI.

    Google Scholar 

  65. Hadrevi, J., Ghafouri, B., Sjors, A., Antti, H., Larsson, B., Crenshaw, A. G., Gerdle, B., & Hellstrom, F. (2013). Comparative metabolomics of muscle interstitium fluid in human trapezius myalgia: an in vivo microdialysis study. European Journal of Applied Physiology, 113, 2977–2989.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Zhang, J., Bhattacharyya, S., Hickner, R. C., Light, A. R., Lambert, C. J., Gale, B. K., Fiehn, O., & Adams, S. H. (2019). Skeletal muscle interstitial fluid metabolomics at rest and associated with an exercise bout: Application in rats and humans. American Journal of Physiology Endocrinology and Metabolism, 316, E43–E53.

    Article  CAS  PubMed  Google Scholar 

  67. Ivanisevic, J., Elias, D., Deguchi, H., Averell, P. M., Kurczy, M., Johnson, C. H., Tautenhahn, R., Zhu, Z., Watrous, J., Jain, M., Griffin, J., Patti, G. J., & Siuzdak, G. (2015). Arteriovenous blood metabolomics: A readout of intra-tissue metabostasis. Scientific Reports, 5, 12757.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Dotzert, M. S., Murray, M. R., McDonald, M. W., Olver, T. D., Velenosi, T. J., Hennop, A., Noble, E. G., Urquhart, B. L., & Melling, C. W. (2016). Metabolomic response of skeletal muscle to aerobic exercise training in insulin resistant type 1 diabetic rats. Scientific Reports, 6, 26379.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Goto-Inoue, N., Yamada, K., Inagaki, A., Furuichi, Y., Ogino, S., Manabe, Y., Setou, M., & Fujii, N. L. (2013). Lipidomics analysis revealed the phospholipid compositional changes in muscle by chronic exercise and high-fat diet. Scientific Reports, 3, 3267.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Ilaiwy, A., Quintana, M. T., Bain, J. R., Muehlbauer, M. J., Brown, D. I., Stansfield, W. E., & Willis, M. S. (2016). Cessation of biomechanical stretch model of C2C12 cells models myocyte atrophy and anaplerotic changes in metabolism using non-targeted metabolomics analysis. The International Journal of Biochemistry and Cell Biology, 79, 80–92.

    Article  CAS  PubMed  Google Scholar 

  71. Saoi, M., Percival, M., Nemr, C., Li, A., Gibala, M., & Britz-McKibbin, P. (2019). Characterization of the human skeletal muscle metabolome for elucidating the mechanisms of bicarbonate ingestion on strenuous interval exercise. Analytical Chemistry, 91, 4709–4718.

    Article  CAS  PubMed  Google Scholar 

  72. Sato, S., Parr, E. B., Devlin, B. L., Hawley, J. A., & Sassone-Corsi, P. (2018). Human metabolomics reveal daily variations under nutritional challenges specific to serum and skeletal muscle. Molecular Metabolism, 16, 1–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Starnes, J. W., Parry, T. L., O’Neal, S. K., Bain, J. R., Muehlbauer, M. J., Honcoop, A., Ilaiwy, A., Christopher, P. M., Patterson, C., & Willis, M. S. (2017). Exercise-induced alterations in skeletal muscle, heart, liver, and serum metabolome identified by non-targeted metabolomics analysis. Metabolites, 7, 40.

    Article  PubMed Central  CAS  Google Scholar 

  74. White, P. J., Lapworth, A. L., An, J., Wang, L., McGarrah, R. W., Stevens, R. D., Ilkayeva, O., George, T., Muehlbauer, M. J., Bain, J. R., Trimmer, J. K., Brosnan, M. J., Rolph, T. P., & Newgard, C. B. (2016). Branched-chain amino acid restriction in Zucker-fatty rats improves muscle insulin sensitivity by enhancing efficiency of fatty acid oxidation and acyl-glycine export. Molecular Metabolism, 5, 538–551.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Abdullah, M., Kornegay, J. N., Honcoop, A., Parry, T. L., Balog-Alvarez, C. J., O’Neal, S. K., Bain, J. R., Muehlbauer, M. J., Newgard, C. B., Patterson, C., & Willis, M. S. (2017). Non-targeted metabolomics analysis of golden retriever muscular dystrophy-affected muscles reveals alterations in arginine and proline metabolism, and elevations in glutamic and oleic acid in vivo. Metabolites, 7(3), 38.

    Article  PubMed Central  CAS  Google Scholar 

  76. Buzkova, J., Nikkanen, J., Ahola, S., Hakonen, A. H., Sevastianova, K., Hovinen, T., Yki-Jarvinen, H., Pietilainen, K. H., Lonnqvist, T., Velagapudi, V., Carroll, C. J., & Suomalainen, A. (2018). Metabolomes of mitochondrial diseases and inclusion body myositis patients: Treatment targets and biomarkers. EMBO Molecular Medicine, 10, e9091.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Griffin, J. L., & Des, R. C. (2009). Applications of metabolomics and proteomics to the mdx mouse model of Duchenne muscular dystrophy: Lessons from downstream of the transcriptome. Genome Medicine, 1, 32.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Du, T., Lin, Z., Xie, Y., Ye, X., Tu, C., Jin, K., Xie, J., & Shen, Y. (2018). Metabolic profiling of femoral muscle from rats at different periods of time after death. PLoS One, 13, e0203920.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Fazelzadeh, P., Hangelbroek, R. W., Tieland, M., de Groot, L. C., Verdijk, L. B., van Loon, L. J., Smilde, A. K., Alves, R. D., Vervoort, J., Muller, M., van Duynhoven, J. P., & Boekschoten, M. V. (2016). The muscle metabolome differs between healthy and frail older adults. Journal of Proteome Research, 15, 499–509.

    Article  CAS  PubMed  Google Scholar 

  80. Garvey, S. M., Dugle, J. E., Kennedy, A. D., McDunn, J. E., Kline, W., Guo, L., Guttridge, D. C., Pereira, S. L., & Edens, N. K. (2014). Metabolomic profiling reveals severe skeletal muscle group-specific perturbations of metabolism in aged FBN rats. Biogerontology, 15, 217–232.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Houtkooper, R. H., Argmann, C., Houten, S. M., Canto, C., Jeninga, E. H., Andreux, P. A., Thomas, C., Doenlen, R., Schoonjans, K., & Auwerx, J. (2011). The metabolic footprint of aging in mice. Scientific Reports, 1, 134.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Jang, C., Oh, S. F., Wada, S., Rowe, G. C., Liu, L., Chan, M. C., Rhee, J., Hoshino, A., Kim, B., Ibrahim, A., Baca, L. G., Kim, E., Ghosh, C. C., Parikh, S. M., Jiang, A., Chu, Q., Forman, D. E., Lecker, S. H., Krishnaiah, S., Rabinowitz, J. D., Weljie, A. M., Baur, J. A., Kasper, D. L., & Arany, Z. (2016). A branched-chain amino acid metabolite drives vascular fatty acid transport and causes insulin resistance. Nature Medicine, 22, 421–426.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Montgomery, M. K., Brown, S. H. J., Mitchell, T. W., Coster, A. C. F., Cooney, G. J., & Turner, N. (2017). Association of muscle lipidomic profile with high-fat diet-induced insulin resistance across five mouse strains. Scientific Reports, 7, 13914.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Roberts, L. D., Bostrom, P., O’Sullivan, J. F., Schinzel, R. T., Lewis, G. D., Dejam, A., Lee, Y. K., Palma, M. J., Calhoun, S., Georgiadi, A., Chen, M. H., Ramachandran, V. S., Larson, M. G., Bouchard, C., Rankinen, T., Souza, A. L., Clish, C. B., Wang, T. J., Estall, J. L., Soukas, A. A., Cowan, C. A., Spiegelman, B. M., & Gerszten, R. E. (2014). beta-Aminoisobutyric acid induces browning of white fat and hepatic beta-oxidation and is inversely correlated with cardiometabolic risk factors. Cell Metabolism, 19, 96–108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Tonks, K. T., Coster, A. C., Christopher, M. J., Chaudhuri, R., Xu, A., Gagnon-Bartsch, J., Chisholm, D. J., James, D. E., Meikle, P. J., Greenfield, J. R., & Samocha-Bonet, D. (2016). Skeletal muscle and plasma lipidomic signatures of insulin resistance and overweight/obesity in humans. Obesity (Silver Spring), 24, 908–916.

    Article  CAS  Google Scholar 

  86. Wood, P., & Shirley, N. (2013). Lipidomics analysis of postmortem interval: Preliminary evaluation of human skeletal muscle. Metabolomics, 3, 127–129.

    Google Scholar 

  87. Aguer, C., Piccolo, B. D., Fiehn, O., Adams, S. H., & Harper, M. E. (2017). A novel amino acid and metabolomics signature in mice overexpressing muscle uncoupling protein 3. The FASEB Journal, 31, 814–827.

    Article  CAS  PubMed  Google Scholar 

  88. An, J., Muoio, D. M., Shiota, M., Fujimoto, Y., Cline, G. W., Shulman, G. I., Koves, T. R., Stevens, R., Millington, D., & Newgard, C. B. (2004). Hepatic expression of malonyl-CoA decarboxylase reverses muscle, liver and whole-animal insulin resistance. Nature Medicine, 10, 268–274.

    Article  CAS  PubMed  Google Scholar 

  89. Cheng, K. K., Akasaki, Y., Lecommandeur, E., Lindsay, R. T., Murfitt, S., Walsh, K., & Griffin, J. L. (2015). Metabolomic analysis of akt1-mediated muscle hypertrophy in models of diet-induced obesity and age-related fat accumulation. Journal of Proteome Research, 14, 342–352.

    Article  CAS  PubMed  Google Scholar 

  90. Choi, C. S., Befroy, D. E., Codella, R., Kim, S., Reznick, R. M., Hwang, Y. J., Liu, Z. X., Lee, H. Y., Distefano, A., Samuel, V. T., Zhang, D., Cline, G. W., Handschin, C., Lin, J., Petersen, K. F., Spiegelman, B. M., & Shulman, G. I. (2008). Paradoxical effects of increased expression of PGC-1alpha on muscle mitochondrial function and insulin-stimulated muscle glucose metabolism. Proceedings of the National Academy of Sciences of the United States of America, 105, 19926–19931.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Koves, T. R., Li, P., An, J., Akimoto, T., Slentz, D., Ilkayeva, O., Dohm, G. L., Yan, Z., Newgard, C. B., & Muoio, D. M. (2005). Peroxisome proliferator-activated receptor-gamma co-activator 1alpha-mediated metabolic remodeling of skeletal myocytes mimics exercise training and reverses lipid-induced mitochondrial inefficiency. The Journal of Biological Chemistry, 280, 33588–33598.

    Article  CAS  PubMed  Google Scholar 

  92. Park, S. M., Byeon, S. K., Lee, H., Sung, H., Kim, I. Y., Seong, J. K., & Moon, M. H. (2017). Lipidomic analysis of skeletal muscle tissues of p53 knockout mice by nUPLC-ESI-MS/MS. Scientific Reports, 7, 3302.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. Roberts, L. D., Hassall, D. G., Winegar, D. A., Haselden, J. N., Nicholls, A. W., & Griffin, J. L. (2009). Increased hepatic oxidative metabolism distinguishes the action of Peroxisome proliferator-activated receptor delta from Peroxisome proliferator-activated receptor gamma in the ob/ob mouse. Genome Medicine, 1, 115.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. Wong, K. E., Mikus, C. R., Slentz, D. H., Seiler, S. E., DeBalsi, K. L., Ilkayeva, O. R., Crain, K. I., Kinter, M. T., Kien, C. L., Stevens, R. D., & Muoio, D. M. (2015). Muscle-specific overexpression of PGC-1alpha does not augment metabolic improvements in response to exercise and caloric restriction. Diabetes, 64, 1532–1543.

    Article  CAS  PubMed  Google Scholar 

  95. Wu, C. L., Satomi, Y., & Walsh, K. (2017). RNA-seq and metabolomic analyses of Akt1-mediated muscle growth reveals regulation of regenerative pathways and changes in the muscle secretome. BMC Genomics, 18, 181.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. York, B., Reineke, E. L., Sagen, J. V., Nikolai, B. C., Zhou, S., Louet, J. F., Chopra, A. R., Chen, X., Reed, G., Noebels, J., Adesina, A. M., Yu, H., Wong, L. J., Tsimelzon, A., Hilsenbeck, S., Stevens, R. D., Wenner, B. R., Ilkayeva, O., Xu, J., Newgard, C. B., & O’Malley, B. W. (2012). Ablation of steroid receptor coactivator-3 resembles the human CACT metabolic myopathy. Cell Metabolism, 15, 752–763.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Koves, T. R., Ussher, J. R., Noland, R. C., Slentz, D., Mosedale, M., Ilkayeva, O., Bain, J., Stevens, R., Dyck, J. R., Newgard, C. B., Lopaschuk, G. D., & Muoio, D. M. (2008). Mitochondrial overload and incomplete fatty acid oxidation contribute to skeletal muscle insulin resistance. Cell Metabolism, 7, 45–56.

    Article  CAS  PubMed  Google Scholar 

  98. Dyar, K. A., Lutter, D., Artati, A., Ceglia, N. J., Liu, Y., Armenta, D., Jastroch, M., Schneider, S., de Mateo, S., Cervantes, M., Abbondante, S., Tognini, P., Orozco-Solis, R., Kinouchi, K., Wang, C., Swerdloff, R., Nadeef, S., Masri, S., Magistretti, P., Orlando, V., Borrelli, E., Uhlenhaut, N. H., Baldi, P., Adamski, J., Tschop, M. H., Eckel-Mahan, K., & Sassone-Corsi, P. (2018). Atlas of circadian metabolism reveals system-wide coordination and communication between clocks. Cell, 174, 1571–1585.e11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Abbondante, S., Eckel-Mahan, K. L., Ceglia, N. J., Baldi, P., & Sassone-Corsi, P. (2016). Comparative circadian metabolomics reveal differential effects of nutritional challenge in the serum and liver. The Journal of Biological Chemistry, 291, 2812–2828.

    Article  CAS  PubMed  Google Scholar 

  100. Adamovich, Y., Rousso-Noori, L., Zwighaft, Z., Neufeld-Cohen, A., Golik, M., Kraut-Cohen, J., Wang, M., Han, X., & Asher, G. (2014). Circadian clocks and feeding time regulate the oscillations and levels of hepatic triglycerides. Cell Metabolism, 19, 319–330.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Aviram, R., Manella, G., Kopelman, N., Neufeld-Cohen, A., Zwighaft, Z., Elimelech, M., Adamovich, Y., Golik, M., Wang, C., Han, X., & Asher, G. (2016). Lipidomics analyses reveal temporal and spatial lipid organization and uncover daily oscillations in intracellular organelles. Molecular Cell, 62, 636–648.

    Article  CAS  PubMed  Google Scholar 

  102. Dyar, K. A., & Eckel-Mahan, K. L. (2017). Circadian metabolomics in time and space. Frontiers in Neuroscience, 11, 369.

    Article  PubMed  PubMed Central  Google Scholar 

  103. Eckel-Mahan, K. L., Patel, V. R., de Mateo, S., Orozco-Solis, R., Ceglia, N. J., Sahar, S., Dilag-Penilla, S. A., Dyar, K. A., Baldi, P., & Sassone-Corsi, P. (2013). Reprogramming of the circadian clock by nutritional challenge. Cell, 155, 1464–1478.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Eckel-Mahan, K. L., Patel, V. R., Mohney, R. P., Vignola, K. S., Baldi, P., & Sassone-Corsi, P. (2012). Coordination of the transcriptome and metabolome by the circadian clock. Proceedings of the National Academy of Sciences of the United States of America, 109, 5541–5546.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Gooley, J. J., & Chua, E. C. (2014). Diurnal regulation of lipid metabolism and applications of circadian lipidomics. Journal of Genetics and Genomics, 41, 231–250.

    Article  CAS  PubMed  Google Scholar 

  106. Krishnaiah, S. Y., Wu, G., Altman, B. J., Growe, J., Rhoades, S. D., Coldren, F., Venkataraman, A., Olarerin-George, A. O., Francey, L. J., Mukherjee, S., Girish, S., Selby, C. P., Cal, S., Er, U., Sianati, B., Sengupta, A., Anafi, R. C., Kavakli, I. H., Sancar, A., Baur, J. A., Dang, C. V., Hogenesch, J. B., & Weljie, A. M. (2017). Clock regulation of metabolites reveals coupling between transcription and metabolism. Cell Metabolism, 25, 961–974.e4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Sato, S., Basse, A. L., Schonke, M., Chen, S., Samad, M., Altintas, A., Laker, R. C., Dalbram, E., Barres, R., Baldi, P., Treebak, J. T., Zierath, J. R., & Sassone-Corsi, P. (2019). Time of exercise specifies the impact on muscle metabolic pathways and systemic energy homeostasis. Cell Metabolism, 30(1), 92–110.e4.

    Article  CAS  PubMed  Google Scholar 

  108. Loizides-Mangold, U., Perrin, L., Vandereycken, B., Betts, J. A., Walhin, J. P., Templeman, I., Chanon, S., Weger, B. D., Durand, C., Robert, M., Paz Montoya, J., Moniatte, M., Karagounis, L. G., Johnston, J. D., Gachon, F., Lefai, E., Riezman, H., & Dibner, C. (2017). Lipidomics reveals diurnal lipid oscillations in human skeletal muscle persisting in cellular myotubes cultured in vitro. Proceedings of the National Academy of Sciences of the United States of America, 114, E8565–E8574.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Dyar, K. A., Ciciliot, S., Wright, L. E., Bienso, R. S., Tagliazucchi, G. M., Patel, V. R., Forcato, M., Paz, M. I., Gudiksen, A., Solagna, F., Albiero, M., Moretti, I., Eckel-Mahan, K. L., Baldi, P., Sassone-Corsi, P., Rizzuto, R., Bicciato, S., Pilegaard, H., Blaauw, B., & Schiaffino, S. (2014). Muscle insulin sensitivity and glucose metabolism are controlled by the intrinsic muscle clock. Molecular Metabolism, 3, 29–41.

    Article  CAS  PubMed  Google Scholar 

  110. Dyar, K. A., Hubert, M. J., Mir, A. A., Ciciliot, S., Lutter, D., Greulich, F., Quagliarini, F., Kleinert, M., Fischer, K., Eichmann, T. O., Wright, L. E., Pena Paz, M. I., Casarin, A., Pertegato, V., Romanello, V., Albiero, M., Mazzucco, S., Rizzuto, R., Salviati, L., Biolo, G., Blaauw, B., Schiaffino, S., & Uhlenhaut, N. H. (2018). Transcriptional programming of lipid and amino acid metabolism by the skeletal muscle circadian clock. PLoS Biology, 16, e2005886.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  111. DeFronzo, R. A., & Tripathy, D. (2009). Skeletal muscle insulin resistance is the primary defect in type 2 diabetes. Diabetes Care, 32(Suppl 2), S157–S163.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Kiens, B. (2006). Skeletal muscle lipid metabolism in exercise and insulin resistance. Physiological Reviews, 86, 205–243.

    Article  CAS  PubMed  Google Scholar 

  113. Wolfe, R. R. (2006). The underappreciated role of muscle in health and disease. The American Journal of Clinical Nutrition, 84, 475–482.

    Article  CAS  PubMed  Google Scholar 

  114. Wagenmakers, A. J. (1998). Muscle amino acid metabolism at rest and during exercise: role in human physiology and metabolism. Exercise and Sport Sciences Reviews, 26, 287–314.

    Article  CAS  PubMed  Google Scholar 

  115. Felig, P. (1975). Amino acid metabolism in man. Annual Review of Biochemistry, 44, 933–955.

    Article  CAS  PubMed  Google Scholar 

  116. Argiles, J. M., Campos, N., Lopez-Pedrosa, J. M., Rueda, R., & Rodriguez-Manas, L. (2016). Skeletal muscle regulates metabolism via interorgan crosstalk: Roles in health and disease. Journal of the American Medical Directors Association, 17, 789–796.

    Article  PubMed  Google Scholar 

  117. Pedersen, B. K., & Febbraio, M. A. (2012). Muscles, exercise and obesity: Skeletal muscle as a secretory organ. Nature Reviews Endocrinology, 8, 457–465.

    Article  CAS  PubMed  Google Scholar 

  118. Isherwood, C. M., Van der Veen, D. R., Johnston, J. D., & Skene, D. J. (2017). Twenty-four-hour rhythmicity of circulating metabolites: Effect of body mass and type 2 diabetes. The FASEB Journal, 31, 5557–5567.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Jang, C., Chen, L., & Rabinowitz, J. D. (2018). Metabolomics and isotope tracing. Cell, 173, 822–837.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Trivedi, D. K., Hollywood, K. A., & Goodacre, R. (2017). Metabolomics for the masses: The future of metabolomics in a personalized world. New Horizons in Translational Medicine, 3, 294–305.

    PubMed  PubMed Central  Google Scholar 

  121. Kennedy, A. D., Wittmann, B. M., Evans, A. M., Miller, L. A. D., Toal, D. R., Lonergan, S., Elsea, S. H., & Pappan, K. L. (2018). Metabolomics in the clinic: A review of the shared and unique features of untargeted metabolomics for clinical research and clinical testing. Journal of Mass Spectrometry, 53, 1143–1154.

    Article  CAS  PubMed  Google Scholar 

  122. Beger, R. D., Dunn, W., Schmidt, M. A., Gross, S. S., Kirwan, J. A., Cascante, M., Brennan, L., Wishart, D. S., Oresic, M., Hankemeier, T., Broadhurst, D. I., Lane, A. N., Suhre, K., Kastenmuller, G., Sumner, S. J., Thiele, I., Fiehn, O., Kaddurah-Daouk, R., & for “Precision Medicine, and Pharmacometabolomics Task Group”-Metabolomics Society Initiative. (2016). Metabolomics enables precision medicine: “A White Paper, Community Perspective”. Metabolomics, 12, 149.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  123. Hood, L. (2013). Systems biology and p4 medicine: Past, present, and future. Rambam Maimonides Medical Journal, 4, e0012.

    Article  PubMed  PubMed Central  Google Scholar 

  124. UN. (2017). World population prospects: The 2017 revision, key findings and advance tables, edited by United Nations DoEaSA, Population division. New York: United Nations.

    Google Scholar 

  125. Friedrich, M. J. (2017). Global obesity epidemic worsening. JAMA, 318, 603.

    PubMed  Google Scholar 

  126. Schiaffino, S., & Reggiani, C. (2011). Fiber types in mammalian skeletal muscles. Physiological Reviews, 91, 1447–1531.

    Article  CAS  PubMed  Google Scholar 

  127. Murgia, M., Nagaraj, N., Deshmukh, A. S., Zeiler, M., Cancellara, P., Moretti, I., Reggiani, C., Schiaffino, S., & Mann, M. (2015). Single muscle fiber proteomics reveals unexpected mitochondrial specialization. EMBO Reports, 16, 387–395.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Schiaffino, S., Reggiani, C., Kostrominova, T. Y., Mann, M., & Murgia, M. (2015). Mitochondrial specialization revealed by single muscle fiber proteomics: Focus on the Krebs cycle. Scandinavian Journal of Medicine and Science in Sports, 25(Suppl 4), 41–48.

    Article  PubMed  Google Scholar 

  129. Duncan, K. D., Fyrestam, J., & Lanekoff, I. (2019). Advances in mass spectrometry based single-cell metabolomics. Analyst, 144, 782–793.

    Article  CAS  PubMed  Google Scholar 

  130. Kim, J., & Hoppel, C. L. (2013). Comprehensive approach to the quantitative analysis of mitochondrial phospholipids by HPLC-MS. Journal of Chromatography. B, Analytical Technologies in the Biomedical and Life Sciences, 912, 105–114.

    Article  CAS  PubMed  Google Scholar 

  131. Furuichi, Y., Goto-Inoue, N., Manabe, Y., Setou, M., Masuda, K., & Fujii, N. L. (2014). Imaging mass spectrometry reveals fiber-specific distribution of acetylcarnitine and contraction-induced carnitine dynamics in rat skeletal muscles. Biochimica et Biophysica Acta, 1837, 1699–1706.

    Article  CAS  PubMed  Google Scholar 

  132. Goto-Inoue, N., Manabe, Y., Miyatake, S., Ogino, S., Morishita, A., Hayasaka, T., Masaki, N., Setou, M., & Fujii, N. L. (2012). Visualization of dynamic change in contraction-induced lipid composition in mouse skeletal muscle by matrix-assisted laser desorption/ionization imaging mass spectrometry. Analytical and Bioanalytical Chemistry, 403, 1863–1871.

    Article  CAS  PubMed  Google Scholar 

  133. Goto-Inoue, N., Morisasa, M., Machida, K., Furuichi, Y., Fujii, N. L., Miura, S., & Mori, T. (2019). Characterization of myofiber-type-specific molecules using mass spectrometry imaging. Rapid Communications in Mass Spectrometry, 33, 185–192.

    Article  CAS  PubMed  Google Scholar 

  134. Tsai, Y. H., Garrett, T. J., Carter, C. S., & Yost, R. A. (2015). Metabolomic analysis of oxidative and glycolytic skeletal muscles by matrix-assisted laser desorption/ionizationmass spectrometric imaging (MALDI MSI). Journal of the American Society for Mass Spectrometry, 26, 915–923.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenneth Allen Dyar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 The American Physiological Society

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dyar, K.A., Artati, A., Cecil, A., Adamski, J. (2019). Skeletal Muscle Metabolomics for Metabolic Phenotyping and Biomarker Discovery. In: Burniston, J., Chen, YW. (eds) Omics Approaches to Understanding Muscle Biology. Methods in Physiology. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-9802-9_10

Download citation

Publish with us

Policies and ethics