Skip to main content

The Role of Omics Approaches in Muscle Research

  • Chapter
  • First Online:
  • 547 Accesses

Part of the book series: Methods in Physiology ((METHPHYS))

Abstract

A thorough understanding of skeletal muscle physiology requires knowledge of the molecular composition of muscle tissue. So far, this has been mostly obtained through biochemical investigations focused on selected components of the muscle contractile and metabolic machinery. More recently, a systems biology approach, based on the emergence of omics technologies, has been introduced to get global views of all muscle components. These approaches have been used to explore the DNA (genomics and epigenomics), RNA (transcriptomics and non-coding RNA analyses), proteins (proteomics and global analyses of post-translational protein modifications, e.g. phosphoproteomics) and small molecules (metabolomics).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Camera, D. M., Burniston, J. G., Pogson, M. A., Smiles, W. J., & Hawley, J. A. (2017). Dynamic proteome profiling of individual proteins in human skeletal muscle after a high-fat diet and resistance exercise. The FASEB Journal, 31, 5478–5494.

    Article  CAS  Google Scholar 

  2. Barrès, R., & Zierath, J. R. (2016). The role of diet and exercise in the transgenerational epigenetic landscape of T2DM. Nature Reviews Endocrinology, 12, 441–451.

    Article  Google Scholar 

  3. Yang, X., Coulombe-Huntington, J., Kang, S., Sheynkman, G. M., Hao, T., Richardson, A., Sun, S., Yang, F., Shen, Y. A., Murray, R. R., Spirohn, K., Begg, B. E., Duran-Frigola, M., MacWilliams, A., Pevzner, S. J., Zhong, Q., Trigg, S. A., Tam, S., Ghamsari, L., Sahni, N., Yi, S., Rodriguez, M. D., Balcha, D., Tan, G., Costanzo, M., Andrews, B., Boone, C., Zhou, X. J., Salehi-Ashtiani, K., Charloteaux, B., Chen, A. A., Calderwood, M. A., Aloy, P., Roth, F. P., Hill, D. E., Iakoucheva, L. M., Xia, Y., & Vidal, M. (2016). Widespread expansion of protein interaction capabilities by alternative splicing. Cell, 164, 805–817.

    Article  CAS  Google Scholar 

  4. Tapial, J., Ha, K. C. H., Sterne-Weiler, T., Gohr, A., Braunschweig, U., Hermoso-Pulido, A., Quesnel-Vallières, M., Permanyer, J., Sodaei, R., Marquez, Y., Cozzuto, L., Wang, X., Gómez-Velázquez, M., Rayon, T., Manzanares, M., Ponomarenko, J., Blencowe, B. J., & Irimia, M. (2017). An atlas of alternative splicing profiles and functional associations reveals new regulatory programs and genes that simultaneously express multiple major isoforms. Genome Research, 27(10), 1759–1768.

    Article  CAS  Google Scholar 

  5. Capitanchik, C., Dixon, C. R., Swanson, S. K., Florens, L., Kerr, A. R. W., & Schirmer, E. C. (2018). Analysis of RNA-Seq datasets reveals enrichment of tissue-specific splice variants for nuclear envelope proteins. Nucleus, 9, 410–430.

    Article  CAS  Google Scholar 

  6. Sharma, K., D’Souza, R. C., Tyanova, S., Schaab, C., Wiśniewski, J. R., Cox, J., & Mann, M. (2014). Ultradeep human phosphoproteome reveals a distinct regulatory nature of Tyr and Ser/Thr-based signaling. Cell Reports, 8, 1583–1594.

    Article  CAS  Google Scholar 

  7. Hoffman, N. J., Parker, B. L., Chaudhuri, R., Fisher-Wellman, K. H., Kleinert, M., Humphrey, S. J., Yang, P., Holliday, M., Trefely, S., Fazakerley, D. J., Stöckli, J., Burchfield, J. G., Jensen, T. E., Jothi, R., Kiens, B., Wojtaszewski, J. F., Richter, E. A., & James, D. E. (2015). Global phosphoproteomic analysis of human skeletal muscle reveals a network of exercise-regulated kinases and AMPK substrates. Cell Metabolism, 22, 922–935.

    Article  CAS  Google Scholar 

  8. Jin, Y., Diffee, G. M., Colman, R. J., Anderson, R. M., & Ge, Y. (2019). Top-down mass spectrometry of sarcomeric protein post-translational modifications from non-human primate skeletal muscle. Journal of the American Society for Mass Spectrometry. https://doi.org/10.1007/s13361-019-02139-0.

  9. Dyar, K. A., Ciciliot, S., Wright, L. E., Bienso, R. S., Tagliazucchi, G. M., Patel, V. R., Forcato, M., Paz, M. I., Gudiksen, A., Solagna, F., Albiero, M., Moretti, I., Eckel-Mahan, K. L., Baldi, P., Sassone-Corsi, P., Rizzuto, R., Bicciato, S., Pilegaard, H., Blaauw, B., & Schiaffino, S. (2014). Muscle insulin sensitivity and glucose metabolism are controlled by the intrinsic muscle clock. Molecular Metabolism, 3, 29–41.

    Article  CAS  Google Scholar 

  10. Dyar, K. A., Hubert, M. J., Mir, A. A., Ciciliot, S., Lutter, D., Greulich, F., Quagliarini, F., Kleinert, M., Fischer, K., Eichmann, T. O., Wright, L. E., Pena Paz, M. I., Casarin, A., Pertegato, V., Romanello, V., Albiero, M., Mazzucco, S., Rizzuto, R., Salviati, L., Biolo, G., Blaauw, B., Schiaffino, S., & Uhlenhaut, N. H. (2018). Transcriptional programming of lipid and amino acid metabolism by the skeletal muscle circadian clock. PLoS Biology, 16, e2005886.

    Article  Google Scholar 

  11. Loizides-Mangold, U., Perrin, L., Vandereycken, B., Betts, J. A., Walhin, J. P., Templeman, I., Chanon, S., Weger, B. D., Durand, C., Robert, M., Paz Montoya, J., Moniatte, M., Karagounis, L. G., Johnston, J. D., Gachon, F., Lefai, E., Riezman, H., & Dibner, C. (2017). Lipidomics reveals diurnal lipid oscillations in human skeletal muscle persisting in cellular myotubes cultured in vitro. Proceedings of the National Academy of Sciences of the United States of America, 114, E8565–E8574.

    Article  CAS  Google Scholar 

  12. Dyar, K. A., Lutter, D., Artati, A., Ceglia, N. J., Liu, Y., Armenta, D., Jastroch, M., Schneider, S., de Mateo, S., Cervantes, M., Abbondante, S., Tognini, P., Orozco-Solis, R., Kinouchi, K., Wang, C., Swerdloff, R., Nadeef, S., Masri, S., Magistretti, P., Orlando, V., Borrelli, E., Uhlenhaut, N. H., Baldi, P., Adamski, J., Tschop, M. H., Eckel-Mahan, K., & Sassone-Corsi, P. (2018). Atlas of circadian metabolism reveals system-wide coordination and communication between clocks. Cell, 174, 1571–1585.e1511.

    Article  CAS  Google Scholar 

  13. Schmalbruch, H., & Hellhammer, U. (1977). The number of nuclei in adult rat muscles with special reference to satellite cells. The Anatomical Record, 189, 169–175.

    Article  CAS  Google Scholar 

  14. Murgia, M., Nagaraj, N., Deshmukh, A. S., Zeiler, M., Cancellara, P., Moretti, I., Reggiani, C., Schiaffino, S., & Mann, M. (2015). Single muscle fiber proteomics reveals unexpected mitochondrial specialization. EMBO Reports, 16, 387–395.

    Article  CAS  Google Scholar 

  15. Murgia, M., Toniolo, L., Nagaraj, N., Ciciliot, S., Vindigni, V., Schiaffino, S., Reggiani, C., & Mann, M. (2017). Single muscle fiber proteomics reveals fiber-type-specific features of human muscle aging. Cell Reports, 19, 2396–2409.

    Article  CAS  Google Scholar 

  16. Lang, F., Khaghani, S., Türk, C., Wiederstein, J. L., Hölper, S., Piller, T., Nogara, L., Blaauw, B., Günther, S., Müller, S., Braun, T., & Krüger, M. (2018). Single muscle fiber proteomics reveals distinct protein changes in slow and fast fibers during muscle atrophy. Journal of Proteome Research, 17, 3333–3347.

    Article  CAS  Google Scholar 

  17. Schiaffino, S., Reggiani, C., Kostrominova, T. Y., Mann, M., & Murgia, M. (2015). Mitochondrial specialization revealed by single muscle fiber proteomics: Focus on the Krebs cycle. Scandinavian Journal of Medicine and Science in Sports, 25(Suppl 4), 41–48.

    Article  Google Scholar 

  18. Glass, D. J. (2010). A critique of the hypothesis, and a defense of the question, as a framework for experimentation. Clinical Chemistry, 56, 1080–1085.

    Article  CAS  Google Scholar 

  19. Van Helden, P. (2013). Data-driven hypotheses. EMBO Reports, 14, 104.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefano Schiaffino .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 The American Physiological Society

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Schiaffino, S., Reggiani, C., Murgia, M. (2019). The Role of Omics Approaches in Muscle Research. In: Burniston, J., Chen, YW. (eds) Omics Approaches to Understanding Muscle Biology. Methods in Physiology. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-9802-9_1

Download citation

Publish with us

Policies and ethics