Skip to main content

Carcinogenicity

  • Chapter
  • First Online:
  • 877 Accesses

Abstract

This chapter explains to the nonpathologist the design, conduct, and interpretation of pathology evaluations of in vivo tests for carcinogenicity. Tumor terminology and other terms used by pathologists in reports of carcinogenicity studies are explained, and the biology of neoplasms is summarized. The design of rodent carcinogenicity studies, their histopathological evaluation, their place in product development, and the application of their results to humans are discussed.

Tumor terminology can be daunting to the nonpathologist; there is far more background noise in carcinogenicity studies than in other types of toxicology study, it can be difficult to apply terminology and diagnostic criteria consistently, and it can be particularly difficult to predict the relevance (or lack of it) to humans of induced rodent neoplasia. However, the same basic principles apply to the design, evaluation, and interpretation of carcinogenicity studies as to other in vivo toxicology studies.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Ames BN, Gold LS (2000) Paracelsus to parascience: the environmental cancer distraction. Mutat Res 447:3–13

    Article  CAS  PubMed  Google Scholar 

  • Baldrick P (2015) Carcinogenicity evaluation: comparison of tumor data from dual control groups in the Sprague-Dawley rat. Toxicol Pathol 33:283–291

    Article  Google Scholar 

  • Basu J et al (2015) Preclinical biosafety evaluation of cell-based therapies: emerging global paradigms. Toxicol Pathol 43:115–125

    Article  PubMed  CAS  Google Scholar 

  • Betton G et al (1988) Gastric ECL-cell hyperplasia and carcinoids in rodents following chronic administration of H2-antagonists SK&F 93479 and oxmetidine and omeprazole. Toxicol Pathol 16:288–298

    Google Scholar 

  • Beyaert R et al (2013) Cancer risk in immune-mediated inflammatory diseases (IMID). Mol Cancer 12:98

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Carcinogenic Potential. EMEA (2002) CPMP/SWP/2877/00. http://www.ema.europa.eu/docs/en_GB/document_library/Scientific_guideline/2009/09/WC500003258.pdf, Accessed 31 Jan 2018

  • Chandra S et al (2015) Dermal toxicity studies: factors impacting study interpretation and outcome. Toxicol Pathol 43:474–481

    Article  CAS  PubMed  Google Scholar 

  • Characiejus D et al (2010) “First do no harm” and the importance of prediction in oncology. EPMA J 1:369–375

    Article  PubMed  PubMed Central  Google Scholar 

  • Cohen SM (1998) Urinary bladder carcinogenesis. Toxicol Pathol 26:121–127

    Article  CAS  PubMed  Google Scholar 

  • Cohen SM, Arnold LL (2016) Critical role of toxicologic pathology in a short-term screen for carcinogenicity. J Toxicol Pathol 29:215–227

    Google Scholar 

  • Ettlin RA et al (2010a) Successful drug development despite adverse preclinical findings. Part 1: processes to address issues and most important findings. J Toxicol Pathol 23:189–211

    Article  PubMed  PubMed Central  Google Scholar 

  • Ettlin RA et al (2010b) Successful drug development despite adverse preclinical findings. Part 2: examples. J Toxicol Pathol 23:213–234

    Article  PubMed  PubMed Central  Google Scholar 

  • Faccini JM et al (1992) IFSTP guidelines for the design and interpretation of the chronic rodent carcinogenicity bioassay. Exp Toxicol Pathol 44:443–456

    Article  CAS  PubMed  Google Scholar 

  • Festing MFW (1995) Use of a Multistrain assay could improve the NTP carcinogenesis bioassay. Environ Health Perspect 103:44–52

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frazier KS et al (2012) Proliferative and nonproliferative lesions of the rat and mouse urinary system. Toxicol Pathol 40:14S–86

    Article  Google Scholar 

  • Graham MJ, Lake BG (2008) Induction of drug metabolism: species differences and toxicological relevance. Toxicology 254:184–191

    Article  CAS  PubMed  Google Scholar 

  • Harada T et al (1989) Morphological and stereological characterization of hepatic foci of cellular alteration in control Fischer 344 rats. Toxicol Pathol 17:579–593

    Article  CAS  PubMed  Google Scholar 

  • Haseman JK, Rao GN (1992) Effects of corn oil, time-related changes, and inter-laboratory variability on tumor occurrence in control Fischer 344 (F344/N) rats. Toxicol Pathol 20:52–60

    Article  CAS  PubMed  Google Scholar 

  • Haseman JK et al (2003) Effect of diet and animal care/housing protocols on body weight, survival, tumor incidences, and nephropathy severity of F344 rats in chronic studies. Toxicol Pathol 31:674–681

    Article  PubMed  Google Scholar 

  • Highman B et al (1980) Neoplastic and preneoplastic lesions induced in female C3H mice by diets containing diethylstilbestrol or 17β-estradiol. J Environ Pathol Toxicol 4:81–95

    CAS  PubMed  Google Scholar 

  • ICH (International conference on harmonisation of technical requirements for registration of pharmaceuticals for human use); Guidance on genotoxicity testing and data interpretation for pharmaceuticals intended for human use; S2(R1) (2011). http://www.ich.org/fileadmin/Public_Web_Site/ICH_Products/Guidelines/Safety/S2_R1/Step4/S2R1_Step4.pdf, Accessed 13 Nov 2018

  • ICH (International conference on harmonisation of technical requirements for registration of pharmaceuticals for human use); Guideline on the need for carcinogenicity studies of pharmaceuticals; S1A (1995). https://www.ich.org/fileadmin/Public_Web_Site/ICH_Products/Guidelines/Safety/S1A/Step4/S1A_Guideline.pdf, Accessed 14 Nov 2018

  • Jacobs AC, Brown PC (2015) Regulatory forum opinion piece: transgenic/alternative carcinogenicity assays: a retrospective review of studies submitted to CDER/FDA 1997–2014. Toxicol Pathol 43:605–610

    Article  CAS  PubMed  Google Scholar 

  • Jacobs AC, Hatfield KP (2012) History of chronic toxicity and animal carcinogenicity studies for pharmaceuticals. Vet Pathol 50:324–333

    Article  PubMed  Google Scholar 

  • James SJ et al (1997) Characterization of cellular response to silicone implants in rats: implications for foreign-body carcinogenesis. Biomaterials 18:667–675

    Article  CAS  PubMed  Google Scholar 

  • King-Herbert A, Thayer K (2006) NTP workshop: animal models for the NTP Rodent cancer bioassay: stocks and strains - should we switch? Toxicol Pathol 34:802–805

    Article  PubMed  PubMed Central  Google Scholar 

  • Kusakawa S et al (2015) Characterization of in vivo tumorigenicity tests using severe immunodeficient NOD/Shi-scid IL2Rgamma null mice for detection of tumorigenic cellular impurities in human cell-processed therapeutic products. Regen Ther 1:30–37

    Article  PubMed  PubMed Central  Google Scholar 

  • Laast VA et al (2014) Distinguishing cystic degeneration from other aging lesions in the adrenal cortex of Sprague-Dawley rats. Toxicol Pathol 42:823–829

    Article  PubMed  CAS  Google Scholar 

  • Lapp S et al (2018) Best practice approach for assessment of microchip-associated tumors in preclinical safety studies: position of the Registry of Industrial Toxicology Animal-data (RITA). Toxicol Pathol 46:728–734

    Article  PubMed  Google Scholar 

  • Lenz B et al (2005) Modulation of oral squamous cell carcinoma incidence in rats via diet and a novel calcium channel antagonist. Toxicol Pathol 33:356–364

    Article  CAS  PubMed  Google Scholar 

  • Malarkey DE et al (2018) Carcinogenesis: manifestation and mechanisms. In: Wallig MA, Haschek WM, Rousseaux CG, Bolon B, Mahler BW (eds) Fundamentals of toxicologic pathology, 3rd edn. Elsevier Inc

    Google Scholar 

  • Mann PC et al (2012) International harmonization of toxicologic pathology nomenclature: an overview and review of basic principles. Toxicol Pathol 40(Suppl):7S–13S

    Article  PubMed  Google Scholar 

  • Massarelli R et al (2012) Comparison of historical control data in two strains of rat used in carcinogenicity studies. https://www.criver.com/sites/default/files/resources/ComparisonofHistoricalControlDatainTwoStrainsofRatUsedinCarcinogenicityStudies.pdf. Accessed 15 Nov 2018

  • McInnes EF et al (2015) Spontaneous nonneoplastic lesions in control Syrian hamsters in three 24-month long-term carcinogenicity studies. Toxicol Pathol 43:272–281

    Article  CAS  PubMed  Google Scholar 

  • Morton D (2001) The Society of Toxicologic Pathology’s position on statistical methods for rodent carcinogenicity studies. Toxicol Pathol 29:670–672

    Google Scholar 

  • Morton D et al (2010) Recommendations for pathology peer review. Toxicol Pathol 38:1118–1127

    Article  PubMed  Google Scholar 

  • Nambiar PR, Morton D (2013) The rasH2 mouse model for assessing carcinogenic potential of pharmaceuticals. Toxicol Pathol 43:1058–1067

    Article  CAS  Google Scholar 

  • OECD (2002) Guidance notes for analysis and evaluation of chronic toxicity and carcinogenicity studies. ENV/JM/MONO(2002)19. http://www.oecd.org/officialdocuments/publicdisplaydocumentpdf/?doclanguage=en&cote=env/jm/mono(2002)19, Accessed 31 Jan 2018

  • Osimitz TG et al (2013) Evaluation of the utility of the lifetime mouse bioassay in the identification of cancer hazards for humans. Food Chem Toxicol 60:550–562

    Article  CAS  PubMed  Google Scholar 

  • Paules RS et al (2011) Moving forward in human cancer risk assessment. Environ Health Perspect 119:739–743

    Article  PubMed  Google Scholar 

  • Peto R (1974) Guidelines on the analysis of tumour rates and death rates in experimental animals. Br J Cancer 29:101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pritchard JB et al (2003) The role of transgenic mouse models in carcinogen identification. Environ Health Perspect 111:444–454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rao GN, Haseman JK (1993) Influence of corn oil and diet on body weight, survival, and tumor incidences in F344/N rats. Nutr Cancer 19:21–30

    Article  CAS  PubMed  Google Scholar 

  • Rees BJ et al (2017) Development of an in vitro PIG-A gene mutation assay in human cells. Mutagenesis 32:283–297

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schuh JCL, Funk K (2018) Compilation of international standards and regulatory guidance documents for evaluation of biomaterials, medical devices, and 3-D printed and regenerative medicine products. Toxicol Pathol 5:2018

    Google Scholar 

  • Selwyn MR (1989) Dual controls, p-value plots and the multiple testing issue in carcinogenicity studies. Environ Health Perspect 82:337–344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Storer RD et al (2010) An industry perspective on the utility of short-term carcinogenicity testing in transgenic mice in pharmaceutical development. Toxicol Pathol 38:51–61

    Article  PubMed  Google Scholar 

  • Thomas GA, Williams ED (1991) Evidence for and possible mechanisms of non-genotoxic carcinogenesis in the rodent thyroid. Mutat Res 248:357–370

    Article  CAS  PubMed  Google Scholar 

  • Tischler AS et al (2018) Toxic responses of the adrenal medulla. In: Reference module in biomedical sciences. Elsevier

    Google Scholar 

  • United States Environmental Protection Agency (1998) Health effects test guidelines OPPTS 870.4200 Carcinogenicity. https://nepis.epa.gov. Accessed 14 Nov 2018

  • United States Food and Drug Administration (2012) Study data specifications, July 18th 2012 https://www.fda.gov/downloads/ForIndustry/DataStandards/StudyDataStandards/UCM312964.pdf, Accessed 31 Jan 2018

  • United States Food and Drug Administration Redbook 2000 (2007). https://www.fda.gov Accessed November 14 2018

  • Vahle JL et al (2010) Carcinogenicity assessments of biotechnology-derived pharmaceuticals: a review of approved molecules and best practice recommendations. Toxicol Pathol 38:522–553

    Article  CAS  PubMed  Google Scholar 

  • Zeller A et al (2018) A critical appraisal of the sensitivity of in vivo genotoxicity assays in detecting human carcinogens. Mutagenesis 33:179–193

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

I thank Aida Diaz-Bayon, Kaori Isobe, Stuart Naylor, Petrina Rogerson, and Carol Strepka for their help in writing this chapter. In addition, Aaron Sargeant contributed much of the information on transgenic mouse studies.

Conflict of Interest Statement

The author is an employee of Charles River Laboratories, which supplies rodents for research and carries out many of the in vitro and in vivo safety assessment tests discussed in this chapter. The views expressed are those of the author.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul Howroyd .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Howroyd, P. (2019). Carcinogenicity. In: Steinbach, T., Patrick, D., Cosenza, M. (eds) Toxicologic Pathology for Non-Pathologists. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9777-0_18

Download citation

Publish with us

Policies and ethics