Skip to main content

Adaptive Immunotherapy for Opportunistic Infections

  • Chapter
  • First Online:
Principles and Practice of Transplant Infectious Diseases

Abstract

Infectious complications are a major cause of morbidity and mortality in patients undergoing solid organ or stem cell transplantation. Over the past years, advances in immunology and molecular biology have greatly contributed to a better understanding of the pathogenesis of opportunistic infections in the immunocompromised host. The lifelong immunosuppression required by the transplant recipients together with the limitations of the current anti-infective agents makes strategies able to stimulate immune response attractive aids to conventional treatment options. Among the immunotherapeutic strategies studied in transplant recipients aiming to enhance the adaptive immune response are the adoptive transfer of T lymphocytes and the use of cytokines such as granulocyte colony-stimulating factor (G-CSF), granulocyte-macrophage colony-stimulating factor (GM-CSF), macrophage colony-stimulating factor (M-CSF), or interferon-gamma (IFN-γ). While some encouraging results in in vitro and in vivo studies exist, currently available clinical evidence on the use of these approaches is limited to allow firm recommendations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Patel R, Paya CV. Infections in solid-organ transplant recipients. Clin Microbiol Rev. 1997;10:86–124.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Centers for Disease Control and Prevention; Infectious Disease Society of America; American Society of Blood and Marrow Transplantation. Guidelines for preventing opportunistic infections among hematopoietic stem cell transplant recipients. MMWR Recomm Rep. 2000;49:1–125, CE1-7.

    Google Scholar 

  3. Munoz P, Fernandez NS, Farinas MC. Epidemiology and risk factors of infections after solid organ transplantation. Enferm Infecc Microbiol Clin. 2012;30(Suppl 2):10–8.

    PubMed  Google Scholar 

  4. Fishman JA. Infection in solid-organ transplant recipients. N Engl J Med. 2007;357:2601–14.

    Article  CAS  PubMed  Google Scholar 

  5. San Juan R, Aguado JM, Lumbreras C, et al. Incidence, clinical characteristics and risk factors of late infection in solid organ transplant recipients: data from the RESITRA study group. Am J Transplant. 2007;7:964–71.

    Article  CAS  PubMed  Google Scholar 

  6. Yu X, Carpenter P, Anasetti C. Advances in transplantation tolerance. Lancet. 2001;357:1959–63.

    Article  CAS  PubMed  Google Scholar 

  7. Moss P, Rickinson A. Cellular immunotherapy for viral infection after HSC transplantation. Nat Rev Immunol. 2005;5:9–20.

    Article  CAS  PubMed  Google Scholar 

  8. Riddell SR, Watanabe KS, Goodrich JM, Li CR, Agha ME, Greenberg PD. Restoration of viral immunity in immunodeficient humans by the adoptive transfer of T cell clones. Science. 1992;257:238–41.

    Article  CAS  PubMed  Google Scholar 

  9. Walter EA, Greenberg PD, Gilbert MJ, et al. Reconstitution of cellular immunity against cytomegalovirus in recipients of allogeneic bone marrow by transfer of T-cell clones from the donor. N Engl J Med. 1995;333:1038–44.

    Article  CAS  PubMed  Google Scholar 

  10. Einsele H, Roosnek E, Rufer N, et al. Infusion of cytomegalovirus (CMV)-specific T cells for the treatment of CMV infection not responding to antiviral chemotherapy. Blood. 2002;99:3916–22.

    Article  CAS  PubMed  Google Scholar 

  11. Peggs KS, Thomson K, Samuel E, et al. Directly selected cytomegalovirus-reactive donor T cells confer rapid and safe systemic reconstitution of virus-specific immunity following stem cell transplantation. Clin Infect Dis. 2011;52:49–57.

    Article  CAS  PubMed  Google Scholar 

  12. Kotton CN, Kumar D, Caliendo AM, et al. International consensus guidelines on the management of cytomegalovirus in solid organ transplantation. Transplantation. 2010;89:779–95.

    Article  PubMed  Google Scholar 

  13. Rooney CM, Smith CA, Ng CY, et al. Infusion of cytotoxic T cells for the prevention and treatment of Epstein-Barr virus-induced lymphoma in allogeneic transplant recipients. Blood. 1998;92:1549–55.

    CAS  PubMed  Google Scholar 

  14. Rooney CM, Smith CA, Ng CY, et al. Use of gene-modified virus-specific T lymphocytes to control Epstein-Barr-virus-related lymphoproliferation. Lancet. 1995;345:9–13.

    Article  CAS  PubMed  Google Scholar 

  15. Papadopoulos EB, Ladanyi M, Emanuel D, et al. Infusions of donor leukocytes to treat Epstein-Barr virus-associated lymphoproliferative disorders after allogeneic bone marrow transplantation. N Engl J Med. 1994;330:1185–91.

    Article  CAS  PubMed  Google Scholar 

  16. Gustafsson A, Levitsky V, Zou JZ, et al. Epstein-Barr virus (EBV) load in bone marrow transplant recipients at risk to develop posttransplant lymphoproliferative disease: prophylactic infusion of EBV-specific cytotoxic T cells. Blood. 2000;95:807–14.

    CAS  PubMed  Google Scholar 

  17. Doubrovina E, Oflaz-Sozmen B, Prockop SE, et al. Adoptive immunotherapy with unselected or EBV-specific T cells for biopsy-proven EBV+ lymphomas after allogeneic hematopoietic cell transplantation. Blood. 2012;119:2644–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Haque T, Wilkie GM, Taylor C, et al. Treatment of Epstein-Barr-virus-positive post-transplantation lymphoproliferative disease with partly HLA-matched allogeneic cytotoxic T cells. Lancet. 2002;360:436–42.

    Article  PubMed  Google Scholar 

  19. Savoldo B, Goss J, Liu Z, et al. Generation of autologous Epstein-Barr virus-specific cytotoxic T cells for adoptive immunotherapy in solid organ transplant recipients. Transplantation. 2001;72:1078–86.

    Article  CAS  PubMed  Google Scholar 

  20. Khanna R, Bell S, Sherritt M, et al. Activation and adoptive transfer of Epstein-Barr virus-specific cytotoxic T cells in solid organ transplant patients with posttransplant lymphoproliferative disease. Proc Natl Acad Sci U S A. 1999;96:10391–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Comoli P, Labirio M, Basso S, et al. Infusion of autologous Epstein-Barr virus (EBV)-specific cytotoxic T cells for prevention of EBV-related lymphoproliferative disorder in solid organ transplant recipients with evidence of active virus replication. Blood. 2002;99:2592–8.

    Article  CAS  PubMed  Google Scholar 

  22. Haque T, Taylor C, Wilkie GM, et al. Complete regression of posttransplant lymphoproliferative disease using partially HLA-matched Epstein Barr virus-specific cytotoxic T cells. Transplantation. 2001;72:1399–402.

    Article  CAS  PubMed  Google Scholar 

  23. Feuchtinger T, Matthes-Martin S, Richard C, et al. Safe adoptive transfer of virus-specific T-cell immunity for the treatment of systemic adenovirus infection after allogeneic stem cell transplantation. Br J Haematol. 2006;134:64–76.

    Article  PubMed  Google Scholar 

  24. Blyth E, Gaundar SS, Clancy L, et al. Clinical-grade varicella zoster virus-specific T cells produced for adoptive immunotherapy in hemopoietic stem cell transplant recipients. Cytotherapy. 2012;14:724–32.

    Article  CAS  PubMed  Google Scholar 

  25. Blyth E, Clancy L, Simms R, et al. BK virus-specific T cells for use in cellular therapy show specificity to multiple antigens and polyfunctional cytokine responses. Transplantation. 2011;92:1077–84.

    Article  CAS  PubMed  Google Scholar 

  26. Perruccio K, Tosti A, Burchielli E, et al. Transferring functional immune responses to pathogens after haploidentical hematopoietic transplantation. Blood. 2005;106:4397–406.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Beck O, Topp MS, Koehl U, et al. Generation of highly purified and functionally active human TH1 cells against Aspergillus fumigatus. Blood. 2006;107:2562–9.

    Article  CAS  PubMed  Google Scholar 

  28. Tramsen L, Beck O, Schuster FR, et al. Generation and characterization of anti-Candida T cells as potential immunotherapy in patients with Candida infection after allogeneic hematopoietic stem-cell transplant. J Infect Dis. 2007;196:485–92.

    Article  CAS  PubMed  Google Scholar 

  29. Schmidt S, Tramsen L, Perkhofer S, et al. Characterization of the cellular immune responses to Rhizopus oryzae with potential impact on immunotherapeutic strategies in hematopoietic stem cell transplantation. J Infect Dis. 2012;206:135–9.

    Article  PubMed  Google Scholar 

  30. Lehrnbecher T, Schmidt S, Koehl U, et al. Adoptive antifungal T cell immunotherapy--into the clinic? Med Mycol. 2011;49(Suppl 1):S164–9.

    Article  PubMed  Google Scholar 

  31. Tramsen L, Schmidt S, Roeger F, Koehl U, Lehrnbecher T. Challenges and prospects of adoptive immunotherapy in prevention and treatment of opportunistic mycoses in hematologic transplant recipients. Curr Infect Dis Rep. 2010;12:444–9.

    Article  PubMed  Google Scholar 

  32. Anderlini P, Champlin RE. Biologic and molecular effects of granulocyte colony-stimulating factor in healthy individuals: recent findings and current challenges. Blood. 2008;111:1767–72.

    Article  CAS  PubMed  Google Scholar 

  33. Dale DC, Liles WC, Summer WR, Nelson S. Review: granulocyte colony-stimulating factor--role and relationships in infectious diseases. J Infect Dis. 1995;172:1061–75.

    Article  CAS  PubMed  Google Scholar 

  34. Hubel K, Dale DC, Liles WC. Therapeutic use of cytokines to modulate phagocyte function for the treatment of infectious diseases: current status of granulocyte colony-stimulating factor, granulocyte-macrophage colony-stimulating factor, macrophage colony-stimulating factor, and interferon-gamma. J Infect Dis. 2002;185:1490–501.

    Article  CAS  PubMed  Google Scholar 

  35. Roilides E, Walsh T. Recombinant cytokines in augmentation and immunomodulation of host defenses against Candida spp. Med Mycol. 2004;42:1–13.

    Article  CAS  PubMed  Google Scholar 

  36. Roilides E, Uhlig K, Venzon D, Pizzo PA, Walsh TJ. Enhancement of oxidative response and damage caused by human neutrophils to Aspergillus fumigatus hyphae by granulocyte colony-stimulating factor and gamma interferon. Infect Immun. 1993;61:1185–93.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Pursell K, Verral S, Daraiesh F, et al. Impaired phagocyte respiratory burst responses to opportunistic fungal pathogens in transplant recipients: in vitro effect of r-metHuG-CSF (Filgrastim). Transpl Infect Dis. 2003;5:29–37.

    Article  CAS  PubMed  Google Scholar 

  38. Boneberg EM, Hareng L, Gantner F, Wendel A, Hartung T. Human monocytes express functional receptors for granulocyte colony-stimulating factor that mediate suppression of monokines and interferon-gamma. Blood. 2000;95:270–6.

    CAS  PubMed  Google Scholar 

  39. Hartung T, Docke WD, Gantner F, et al. Effect of granulocyte colony-stimulating factor treatment on ex vivo blood cytokine response in human volunteers. Blood. 1995;85:2482–9.

    CAS  PubMed  Google Scholar 

  40. von Aulock S, Boneberg EM, Diterich I, Hartung T. Granulocyte colony-stimulating factor (filgrastim) treatment primes for increased ex vivo inducible prostanoid release. J Pharmacol Exp Ther. 2004;308:754–9.

    Article  CAS  Google Scholar 

  41. Hayamizu K, Egi H, Ohmori I, Kitayama T, Asahara T. Improvement of heart allograft acceptability by pretreatment of donors with granulocyte colony-stimulating factor. Transplant Proc. 2002;34:2732.

    Article  CAS  PubMed  Google Scholar 

  42. Hayamizu K, Yahata H, Shinozaki K, Tanji H, Strober S, Asahara T. Granulocyte colony-stimulating factor-mobilized donor monocytes facilitate heart allograft acceptance. Transplant Proc. 2000;32:2068–9.

    Article  CAS  PubMed  Google Scholar 

  43. Foster PF, Kociss K, Shen J, et al. Granulocyte colony-stimulating factor immunomodulation in the rat cardiac transplantation model. Transplantation. 1996;61:1122–5.

    Article  CAS  PubMed  Google Scholar 

  44. Egi H, Hayamizu K, Kitayama T, Ohmori I, Okajima M, Asahara T. Downregulation of both interleukin-12 and interleukin-2 in heart allografts by pretransplant host treatment with granulocyte colony-stimulating factor and tacrolimus. Cytokine. 2002;18:164–7.

    Article  CAS  PubMed  Google Scholar 

  45. Ohmori I, Hayamizu K, Kitayama T, Egi H, Aihaiti X, Asahara T. Downregulation of interleukin-12p35 and upregulation of interleukin-12p40 mRNA expression in heart allografts by blood transfusion from granulocyte colony-stimulating factor-treated donors. Cytokine. 2003;21:27–31.

    Article  CAS  PubMed  Google Scholar 

  46. Kitayama T, Hayamizu K, Egi H, Ohmori I, Yoshimitsu M, Asahara T. Facilitation of tacrolimus-induced heart-allograft acceptability by pretransplant host treatment with granulocyte colony-stimulating factor: interleukin-12-restricted suppression of intragraft monokine mRNA expression. Transplantation. 2003;75:553–6.

    Article  CAS  PubMed  Google Scholar 

  47. Gil-Lamaignere C, Simitsopoulou M, Roilides E, Maloukou A, Winn RM, Walsh TJ. Interferon- gamma and granulocyte-macrophage colony-stimulating factor augment the activity of polymorphonuclear leukocytes against medically important zygomycetes. J Infect Dis. 2005;191:1180–7.

    Article  CAS  PubMed  Google Scholar 

  48. Weisbart RH, Golde DW, Clark SC, Wong GG, Gasson JC. Human granulocyte-macrophage colony-stimulating factor is a neutrophil activator. Nature. 1985;314:361–3.

    Article  CAS  PubMed  Google Scholar 

  49. Dale DC, Liles WC, Llewellyn C, Price TH. Effects of granulocyte-macrophage colony-stimulating factor (GM-CSF) on neutrophil kinetics and function in normal human volunteers. Am J Hematol. 1998;57:7–15.

    Article  CAS  PubMed  Google Scholar 

  50. Page AV, Liles WC. Granulocyte colony-stimulating factor, granulocyte-macrophage colony-stimulating factor, and other immunomodulatory therapies for the treatment of infectious diseases in solid organ transplant recipients. Curr Opin Organ Transplant. 2008;13:575–80.

    Article  PubMed  Google Scholar 

  51. Xu J, Lucas R, Schuchmann M, et al. GM-CSF restores innate, but not adaptive, immune responses in glucocorticoid-immunosuppressed human blood in vitro. J Immunol. 2003;171:938–47.

    Article  CAS  PubMed  Google Scholar 

  52. Xu J, Lucas R, Wendel A. The potential of GM-CSF to improve resistance against infections in organ transplantation. Trends Pharmacol Sci. 2004;25:254–8.

    Article  CAS  PubMed  Google Scholar 

  53. Roilides E, Lyman CA, Sein T, Gonzalez C, Walsh TJ. Antifungal activity of splenic, liver and pulmonary macrophages against Candida albicans and effects of macrophage colony-stimulating factor. Med Mycol. 2000;38:161–8.

    Article  CAS  PubMed  Google Scholar 

  54. Sasaki E, Tashiro T, Kuroki M, et al. Effects of macrophage colony-stimulating factor (M-CSF) on anti-fungal activity of mononuclear phagocytes against Trichosporon asahii. Clin Exp Immunol. 2000;119:293–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Roilides E, Sein T, Holmes A, et al. Effects of macrophage colony-stimulating factor on antifungal activity of mononuclear phagocytes against Aspergillus fumigatus. J Infect Dis. 1995;172:1028–34.

    Article  CAS  PubMed  Google Scholar 

  56. Roilides E, Lyman CA, Sein T, Petraitiene R, Walsh TJ. Macrophage colony-stimulating factor enhances phagocytosis and oxidative burst of mononuclear phagocytes against Penicillium marneffei conidia. FEMS Immunol Med Microbiol. 2003;36:19–26.

    Article  CAS  PubMed  Google Scholar 

  57. Roilides E, Lyman CA, Mertins SD, et al. Ex vivo effects of macrophage colony-stimulating factor on human monocyte activity against fungal and bacterial pathogens. Cytokine. 1996;8:42–8.

    Article  CAS  PubMed  Google Scholar 

  58. Cenci E, Bartocci A, Puccetti P, Mocci S, Stanley ER, Bistoni F. Macrophage colony-stimulating factor in murine candidiasis: serum and tissue levels during infection and protective effect of exogenous administration. Infect Immun. 1991;59:868–72.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Vitt CR, Fidler JM, Ando D, Zimmerman RJ, Aukerman SL. Antifungal activity of recombinant human macrophage colony-stimulating factor in models of acute and chronic candidiasis in the rat. J Infect Dis. 1994;169:369–74.

    Article  CAS  PubMed  Google Scholar 

  60. Kuhara T, Uchida K, Yamaguchi H. Therapeutic efficacy of human macrophage colony-stimulating factor, used alone and in combination with antifungal agents, in mice with systemic Candida albicans infection. Antimicrob Agents Chemother. 2000;44:19–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Nishina T, Naomoto Y, Gouchi A, et al. Macrophage colony-stimulating factor inhibits tumor necrosis factor production and prolongs skin graft survival. Transplantation. 2004;77:456–9.

    Article  CAS  PubMed  Google Scholar 

  62. Rowe JM, Andersen JW, Mazza JJ, et al. A randomized placebo-controlled phase III study of granulocyte-macrophage colony-stimulating factor in adult patients (> 55 to 70 years of age) with acute myelogenous leukemia: a study of the Eastern Cooperative Oncology Group (E1490). Blood. 1995;86:457–62.

    CAS  PubMed  Google Scholar 

  63. Antman KS, Griffin JD, Elias A, et al. Effect of recombinant human granulocyte-macrophage colony-stimulating factor on chemotherapy-induced myelosuppression. N Engl J Med. 1988;319:593–8.

    Article  CAS  PubMed  Google Scholar 

  64. Gerhartz HH, Engelhard M, Meusers P, et al. Randomized, double-blind, placebo-controlled, phase III study of recombinant human granulocyte-macrophage colony-stimulating factor as adjunct to induction treatment of high-grade malignant non-Hodgkin’s lymphomas. Blood. 1993;82:2329–39.

    CAS  PubMed  Google Scholar 

  65. Lyman GH, Kuderer NM, Djulbegovic B. Prophylactic granulocyte colony-stimulating factor in patients receiving dose-intensive cancer chemotherapy: a meta-analysis. Am J Med. 2002;112:406–11.

    Article  CAS  PubMed  Google Scholar 

  66. Fishman JA, Emery V, Freeman R, et al. Cytomegalovirus in transplantation – challenging the status quo. Clin Transpl. 2007;21:149–58.

    Article  Google Scholar 

  67. Trivedi M, Martinez S, Corringham S, Medley K, Ball ED. Optimal use of G-CSF administration after hematopoietic SCT. Bone Marrow Transplant. 2009;43:895–908.

    Article  CAS  PubMed  Google Scholar 

  68. Ozcan M, Ustun C, Akcaglayan E, et al. Recombinant human granulocyte colony-stimulating factor (rh-G-CSF) may accelerate hematopoietic recovery after HLA-identical sibling allogeneic peripheral blood stem cell transplantation. Bone Marrow Transplant. 2001;27:499–505.

    Article  CAS  PubMed  Google Scholar 

  69. Bishop MR, Tarantolo SR, Geller RB, et al. A randomized, double-blind trial of filgrastim (granulocyte colony-stimulating factor) versus placebo following allogeneic blood stem cell transplantation. Blood. 2000;96:80–5.

    CAS  PubMed  Google Scholar 

  70. McQuaker IG, Hunter AE, Pacey S, Haynes AP, Iqbal A, Russell NH. Low-dose filgrastim significantly enhances neutrophil recovery following autologous peripheral-blood stem-cell transplantation in patients with lymphoproliferative disorders: evidence for clinical and economic benefit. J Clin Oncol. 1997;15:451–7.

    Article  CAS  PubMed  Google Scholar 

  71. Klumpp TR, Mangan KF, Goldberg SL, Pearlman ES, Macdonald JS. Granulocyte colony-stimulating factor accelerates neutrophil engraftment following peripheral-blood stem-cell transplantation: a prospective, randomized trial. J Clin Oncol. 1995;13:1323–7.

    Article  CAS  PubMed  Google Scholar 

  72. Smith TJ, Khatcheressian J, Lyman GH, et al. 2006 update of recommendations for the use of white blood cell growth factors: an evidence-based clinical practice guideline. J Clin Oncol. 2006;24:3187–205.

    Article  CAS  PubMed  Google Scholar 

  73. Stinson TJ, Adams JR, Bishop MR, Kruse S, Tarantolo S, Bennet CL. Economic analysis of a phase III study of G-CSF vs placebo following allogeneic blood stem cell transplantation. Bone Marrow Transplant. 2000;26:663–6.

    Article  CAS  PubMed  Google Scholar 

  74. Ringden O, Labopin M, Gorin NC, et al. Treatment with granulocyte colony-stimulating factor after allogeneic bone marrow transplantation for acute leukemia increases the risk of graft-versus-host disease and death: a study from the Acute Leukemia Working Party of the European Group for blood and marrow transplantation. J Clin Oncol. 2004;22:416–23.

    Article  CAS  PubMed  Google Scholar 

  75. Faber E, Pytlik R, Slaby J, et al. Individually determined dosing of filgrastim after autologous peripheral stem cell transplantation in patients with malignant lymphoma--results of a prospective multicentre controlled trial. Eur J Haematol. 2006;77:493–500.

    Article  CAS  PubMed  Google Scholar 

  76. Piccirillo N, Sica S, Laurenti L, et al. Optimal timing of G-CSF administration after CD34+ immunoselected peripheral blood progenitor cell transplantation. Bone Marrow Transplant. 1999;3:1245–50.

    Article  Google Scholar 

  77. Bence-Bruckler I, Bredeson C, Atkins H, et al. A randomized trial of granulocyte colony-stimulating factor (Neupogen) starting day 1 vs day 7 post-autologous stem cell transplantation. Bone Marrow Transplant. 1998;22:965–9.

    Article  CAS  PubMed  Google Scholar 

  78. Zafrani L, Truffaut L, Kreis H, et al. Incidence, risk factors and clinical consequences of neutropenia following kidney transplantation: a retrospective study. Am J Transplant. 2009;9:1816–25.

    Article  CAS  PubMed  Google Scholar 

  79. Ishizone S, Makuuchi M, Kawasaki S, et al. Effect of granulocyte colony-stimulating factor on neutropenia in liver transplant recipients with hypersplenism. J Pediatr Surg. 1994;29:510–3.

    Article  CAS  PubMed  Google Scholar 

  80. Hartmann EL, Gatesman M, Roskopf-Somerville J, Stratta R, Farney A, Sundberg A. Management of leukopenia in kidney and pancreas transplant recipients. Clin Transpl. 2008;22:822–8.

    Article  Google Scholar 

  81. Hurst FP, Belur P, Nee R, et al. Poor outcomes associated with neutropenia after kidney transplantation: analysis of United States Renal Data System. Transplantation. 2011;92:36–40.

    Article  PubMed  Google Scholar 

  82. Schmaldienst S, Bekesi G, Deicher R, Franz M, Horl WH, Pohanka E. Recombinant human granulocyte colony-stimulating factor after kidney transplantation: a retrospective analysis to evaluate the benefit or risk of immunostimulation. Transplantation. 2000;69:527–31.

    Article  CAS  PubMed  Google Scholar 

  83. Turgeon N, Hovingh GK, Fishman JA, et al. Safety and efficacy of granulocyte colony-stimulating factor in kidney and liver transplant recipients. Transpl Infect Dis. 2000;2:15–21.

    Article  CAS  PubMed  Google Scholar 

  84. Tajima A, Aso Y, Kawabe K, et al. Colony-stimulating factor for treatment of leukopenia after kidney allografting. Transplant Proc. 1991;23:1369–70.

    CAS  PubMed  Google Scholar 

  85. Peddi VR, Hariharan S, Schroeder TJ, First MR. Role of granulocyte colony stimulating factor (G-CSF) in reversing neutropenia in renal allograft recipients. Clin Transpl. 1996;10:20–3.

    CAS  Google Scholar 

  86. Colquhoun SD, Shaked A, Jurim O, Colonna JO, Rosove MH, Busuttil RW. Reversal of neutropenia with granulocyte colony-stimulating factor without precipitating liver allograft rejection. Transplantation. 1993;56:1593–5.

    CAS  PubMed  Google Scholar 

  87. Atici AE, Bostanci EB, Ozer I, Ulas M, Akdogan M, Akoglu M. Use of granulocyte colony-stimulating factor for neutropenia after orthotopic liver transplantation: report of two cases. Transplant Proc. 2011;43:909–11.

    Article  CAS  PubMed  Google Scholar 

  88. Birkeland SA, Elbirk A, Rohr N, Jorgensen KA. Severe neutropenia after renal transplantation and its reversal with granulocyte colony-stimulating factor. Transplant Proc. 1994;26:3098–9.

    CAS  PubMed  Google Scholar 

  89. Foster PF, Mital D, Sankary HN, et al. The use of granulocyte colony-stimulating factor after liver transplantation. Transplantation. 1995;59:1557–63.

    Article  CAS  PubMed  Google Scholar 

  90. Winston DJ, Foster PF, Somberg KA, et al. Randomized, placebo-controlled, double-blind, multicenter trial of efficacy and safety of granulocyte colony-stimulating factor in liver transplant recipients. Transplantation. 1999;68:1298–304.

    Article  CAS  PubMed  Google Scholar 

  91. Taylor KM, Jagannath S, Spitzer G, et al. Recombinant human granulocyte colony-stimulating factor hastens granulocyte recovery after high-dose chemotherapy and autologous bone marrow transplantation in Hodgkin's disease. J Clin Oncol. 1989;7:1791–9.

    Article  CAS  PubMed  Google Scholar 

  92. Devereaux S, Linch DC, Gribben JG, McMillan A, Patterson K, Goldstone AH. GM-CSF accelerates neutrophil recovery after autologous bone marrow transplantation for Hodgkin’s disease. Bone Marrow Transplant. 1989;4:49–54.

    CAS  PubMed  Google Scholar 

  93. Klingemann HG, Eaves AC, Barnett MJ, et al. Recombinant GM-CSF in patients with poor graft function after bone marrow transplantation. Clin Invest Med. 1990;13:77–81.

    CAS  PubMed  Google Scholar 

  94. Greenberg P, Advani R, Keating A, et al. GM-CSF accelerates neutrophil recovery after autologous hematopoietic stem cell transplantation. Bone Marrow Transplant. 1996;18:1057–64.

    CAS  PubMed  Google Scholar 

  95. Gorin NC, Coiffier B, Hayat M, et al. Recombinant human granulocyte-macrophage colony-stimulating factor after high-dose chemotherapy and autologous bone marrow transplantation with unpurged and purged marrow in non-Hodgkin’s lymphoma: a double-blind placebo-controlled trial. Blood. 1992;80:1149–57.

    CAS  PubMed  Google Scholar 

  96. Ho AD, Haas R, Korbling M, Dietz M, Hunstein W. Utilization of recombinant human GM-CSF to enhance peripheral progenitor cell yield for autologous transplantation. Bone Marrow Transplant. 1991;7(Suppl 1):13–7.

    PubMed  Google Scholar 

  97. Advani R, Chao NJ, Horning SJ, et al. Granulocyte-macrophage colony-stimulating factor (GM-CSF) as an adjunct to autologous hemopoietic stem cell transplantation for lymphoma. Ann Intern Med. 1992;116:183–9.

    Article  CAS  PubMed  Google Scholar 

  98. Nemunaitis J, Buckner CD, Dorsey KS, Willis D, Meyer W, Appelbaum F. Retrospective analysis of infectious disease in patients who received recombinant human granulocyte-macrophage colony-stimulating factor versus patients not receiving a cytokine who underwent autologous bone marrow transplantation for treatment of lymphoid cancer. Am J Clin Oncol. 1998;21:341–6.

    Article  CAS  PubMed  Google Scholar 

  99. Vales-Albertos LJ, Andrade-Sierra J, Gomez-Navarro B, et al. Nonspecific immunoglobulin and granulocyte-macrophage colony-stimulating factor use in complicated varicella zoster: the first case report in a renal transplant recipient. Transplantation. 2006;81:809–10.

    Article  PubMed  Google Scholar 

  100. Gregorini M, Castello M, Rampino T, et al. GM-CSF contributes to prompt healing of ecthyma gangrenosum lesions in kidney transplant recipient. J Nephrol. 2012;25:137–9.

    Article  PubMed  Google Scholar 

  101. Hashmi A, Hussain M, Hussain Z, et al. Use of rHu GM-CSF in renal-transplant patients developing leukopenia. Transplant Proc. 1997;29:3053.

    Article  CAS  PubMed  Google Scholar 

  102. Trindade E, Maton P, Reding R, et al. Use of granulocyte macrophage colony stimulating factor in children after orthotopic liver transplantation. J Hepatol. 1998;28:1054–7.

    Article  CAS  PubMed  Google Scholar 

  103. Rosenbloom AJ, Linden PK, Dorrance A, Penkosky N, Cohen-Melamed MH, Pinsky MR. Effect of granulocyte-monocyte colony-stimulating factor therapy on leukocyte function and clearance of serious infection in nonneutropenic patients. Chest. 2005;127:2139–50.

    Article  CAS  PubMed  Google Scholar 

  104. Sokal EM, Caragiozoglou T, Lamy M, Reding R, Otte JB. Epstein-Barr virus serology and Epstein-Barr virus-associated lymphoproliferative disorders in pediatric liver transplant recipients. Transplantation. 1993;56:1394–8.

    Article  CAS  PubMed  Google Scholar 

  105. Nemunaitis J, Shannon-Dorcy K, Appelbaum FR, et al. Long-term follow-up of patients with invasive fungal disease who received adjunctive therapy with recombinant human macrophage colony-stimulating factor. Blood. 1993;82:1422–7.

    CAS  PubMed  Google Scholar 

  106. Antachopoulos C, Roilides E. Cytokines and fungal infections. Br J Haematol. 2005;129:583–96.

    Article  CAS  PubMed  Google Scholar 

  107. Komrokji RS, Lyman GH. The colony-stimulating factors: use to prevent and treat neutropenia and its complications. Expert Opin Biol Ther. 2004;4:1897–910.

    Article  CAS  PubMed  Google Scholar 

  108. Roilides E, Lamaignere CG, Farmaki E. Cytokines in immunodeficient patients with invasive fungal infections: an emerging therapy. Int J Infect Dis. 2002;6:154–63.

    Article  PubMed  Google Scholar 

  109. Welte K, Gabrilove J, Bronchud MH, Platzer E, Morstyn G. Filgrastim (r-metHuG-CSF): the first 10 years. Blood. 1996;88:1907–29.

    CAS  PubMed  Google Scholar 

  110. Root RK, Dale DC. Granulocyte colony-stimulating factor and granulocyte-macrophage colony-stimulating factor: comparisons and potential for use in the treatment of infections in nonneutropenic patients. J Infect Dis. 1999;179(Suppl 2):S342–52.

    Article  CAS  PubMed  Google Scholar 

  111. Rodriguez-Adrian LJ, Grazziutti ML, Rex JH, Anaissie EJ. The potential role of cytokine therapy for fungal infections in patients with cancer: is recovery from neutropenia all that is needed? Clin Infect Dis. 1998;26:1270–8.

    Article  CAS  PubMed  Google Scholar 

  112. Ohno R, Tomonaga M, Kobayashi T, et al. Effect of granulocyte colony-stimulating factor after intensive induction therapy in relapsed or refractory acute leukemia. N Engl J Med. 1990;323:871–7.

    Article  CAS  PubMed  Google Scholar 

  113. Pappas PG, Bustamante B, Ticona E, et al. Recombinant interferon- gamma 1b as adjunctive therapy for AIDS-related acute cryptococcal meningitis. J Infect Dis. 2004;189:2185–91.

    Article  CAS  PubMed  Google Scholar 

  114. Minguez C, Mazuecos A, Ceballos M, Tejuca F, Rivero M. Worsening of renal function in a renal transplant patient treated with granulocyte colony-stimulating factor. Nephrol Dial Transplant. 1995;10:2166–7.

    CAS  PubMed  Google Scholar 

  115. Gallin JI, Farber JM, Holland SM, Nutman TB. Interferon-gamma in the management of infectious diseases. Ann Intern Med. 1995;123:216–24.

    Article  CAS  PubMed  Google Scholar 

  116. Murray HW. Interferon-gamma and host antimicrobial defense: current and future clinical applications. Am J Med. 1994;97:459–67.

    Article  CAS  PubMed  Google Scholar 

  117. Abend JR, Low JA, Imperiale MJ. Inhibitory effect of gamma interferon on BK virus gene expression and replication. J Virol. 2007;81:272–9.

    Article  CAS  PubMed  Google Scholar 

  118. Wilson JJ, Lin E, Pack CD, et al. Gamma interferon controls mouse polyomavirus infection in vivo. J Virol. 2011;85:10126–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Nagai H, Guo J, Choi H, Kurup V. Interferon-gamma and tumor necrosis factor-alpha protect mice from invasive aspergillosis. J Infect Dis. 1995;172:1554–60.

    Article  CAS  PubMed  Google Scholar 

  120. Kullberg BJ, van ’t Wout JW, Hoogstraten C, van Furth R. Recombinant interferon-gamma enhances resistance to acute disseminated Candida albicans infection in mice. J Infect Dis. 1993;168:436–43.

    Article  CAS  PubMed  Google Scholar 

  121. A controlled trial of interferon gamma to prevent infection in chronic granulomatous disease. The International Chronic Granulomatous Disease Cooperative Study Group. N Engl J Med. 1991;324:509–16.

    Google Scholar 

  122. Safdar A, Rodriguez G, Ohmagari N, et al. The safety of interferon-gamma-1b therapy for invasive fungal infections after hematopoietic stem cell transplantation. Cancer. 2005;103:731–9.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emmanuel Roilides .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Katragkou, A., Walsh, T.J., Roilides, E. (2019). Adaptive Immunotherapy for Opportunistic Infections. In: Safdar, A. (eds) Principles and Practice of Transplant Infectious Diseases. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-9034-4_57

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9034-4_57

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-9032-0

  • Online ISBN: 978-1-4939-9034-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics