Skip to main content

Empirical Best Linear Unbiased Prediction of Computer Simulator Output

  • Chapter
  • First Online:

Part of the book series: Springer Series in Statistics ((SSS))

Abstract

This chapter and Chap. 4 discuss techniques for predicting output for a computer simulator based on “training” runs from the model. Knowing how to predict computer output is a prerequisite for answering most practical research questions that involve computer simulators including those listed in Sect. 1.3. As an example where the prediction methods described below will be central, Chap. 6 will present a sequential design for a computer experiment to find input conditions \(\boldsymbol{x}\) that maximize a computer output which requires prediction of \(y(\boldsymbol{x})\) at all untried sites.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Allen DM (1974) The relationship between variable selection and data augmentation and a method for prediction. Technometrics 16:125–127

    Article  MathSciNet  Google Scholar 

  • Atamturktur S, Williams B, Egeberg M, Unal C (2013) Batch sequential design of optimal experiments for improved predictive maturity in physics-based modeling. Struct Multidiscip Optim 48:549–569

    Article  Google Scholar 

  • Atamturktur S, Hegenderfer J, Williams B, Unal C (2015) Selection criterion based on an exploration-exploitation approach for optimal design of experiments. ASCE: J Eng Mech 141(1):04014108

    Google Scholar 

  • Ba S, Joseph VR (2012) Composite Gaussian Process models for emulating expensive functions. Ann Appl Stat 6(4):1838–1860

    Article  MathSciNet  Google Scholar 

  • Ba S, Myers WR, Brenneman WA (2015) Optimal sliced Latin hypercube designs. Technometrics 57(4):479–487

    Article  MathSciNet  Google Scholar 

  • Bachoc F (2013) Cross validation and maximum likelihood estimations of hyper-parameters of Gaussian processes with model misspecification. Comput Stat Data Anal 66:55–69

    Article  MathSciNet  Google Scholar 

  • Bastos LS, O’Hagan A (2009) Diagnostics for Gaussian process emulators. Technometrics 51(4):425–438

    Article  MathSciNet  Google Scholar 

  • Beattie SD, Lin DK (1997) Rotated factorial design for computer experiments. In: ASA proceedings of the section on physical and engineering sciences, American Statistical Association, Alexandria, VA, pp 431–450

    Google Scholar 

  • Ben-Ari EN, Steinberg DM (2007) Experiments: an empirical comparison of kriging with MARS and projection pursuit regression. Qual Eng 19:327–338

    Article  Google Scholar 

  • Berger JO, De Oliveira V, Sansó B (2001) Objective Bayesian analysis of spatially correlated data. J Am Stat Assoc 96:1361–1374

    Article  MathSciNet  Google Scholar 

  • Blatman G, Sudret B (2010) Efficient computation of global sensitivity indices using sparse polynomial chaos expansions. Reliab Eng Syst Saf 95:1216–1229

    Article  Google Scholar 

  • Buhmann MD (2003) Radial basis functions: theory and implementations. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Bursztyn D, Steinberg DM (2002) Rotation designs: orthogonal first-order designs with higher-order projectivity. J Appl Stoch Models Bus Ind 18:197–206

    Article  MathSciNet  Google Scholar 

  • Bursztyn D, Steinberg DM (2006) Comparison of designs for computer experiments. J Stat Plann Inf 136:1103–1119

    Article  MathSciNet  Google Scholar 

  • Butler A, Haynes RD, Humphries TD, Ranjan P (2014) Efficient optimization of the likelihood function in Gaussian process modelling. Comput Stat Data Anal 73:40–52

    Article  MathSciNet  Google Scholar 

  • Chakraborty A, Bingham D, Dhavala SS, Kuranz CC, Drake RP, Grosskopf MJ, Rutter EM, Torralva BR, Holloway JP, McClaren RG, Malllick BK (2017) Emulation of numerical models with over-specified basis functions. Technometrics 59:153–164

    Article  MathSciNet  Google Scholar 

  • Davis C (2015) A Bayesian approach to prediction and variable selection using nonstationary Gaussian processes. PhD thesis, Department of Statistics, The Ohio State University, Columbus, OH

    Google Scholar 

  • Franey M, Ranjan P, Chipman H (2011) Branch and bound algorithms for maximizing expected improvement functions. J Stat Plann Inf 141:42–55

    Article  MathSciNet  Google Scholar 

  • Gibbs MN (1997) Bayesian Gaussian processes for regression and classification. PhD thesis, Cambridge University, Cambridge

    Google Scholar 

  • Golub GH, Heath M, Wahba G (1979) Generalized cross-validation as a method for choosing a good ridge parameter. Technometrics 21:215–223

    Article  MathSciNet  Google Scholar 

  • Gramacy RB, Lee HKH (2008) Bayesian treed Gaussian process models with an application to computer modeling. J Am Stat Assoc 103:1119–1130

    Article  MathSciNet  Google Scholar 

  • Handcock MS, Stein ML (1993) A Bayesian analysis of kriging. Technometrics 35:403–410

    Article  Google Scholar 

  • Harville DA (1974) Bayesian inference for variance components using only error contrasts. Biometrika 61:383–385

    Article  MathSciNet  Google Scholar 

  • Harville DA (1977) Maximum likelihood approaches to variance component estimation and to related problems (with discussion). J Am Stat Assoc 72:320–340

    Article  Google Scholar 

  • Harville DA (1997) Matrix algebra from a statistician’s perspective. Springer, New York, NY

    Book  Google Scholar 

  • Hastie T, Tibshirani R, Friedman J (2001) The elements of statistical learning: data mining, inference, and prediction. Springer, New York, NY

    Book  Google Scholar 

  • Higdon D, Kennedy M, Cavendish J, Cafeo J, Ryne R (2004) Combining field data and computer simulations for calibration and prediction. SIAM J Sci Comput 26:448–466

    Article  MathSciNet  Google Scholar 

  • Higdon D, Gattiker J, Williams B, Rightley M (2008) Computer model calibration using high dimensional output. J Am Stat Assoc 103:570–583

    Article  MathSciNet  Google Scholar 

  • Johnson RT, Jones B, Fowler JW, Montgomery DC (2008) Comparing designs for computer simulation experiments. In: Mason SJ, Hill RR, Moench L, Rose O, Jefferson T, Fowler JW (eds) Proceedings of the 2008 winter simulation conference, pp 463–470

    Google Scholar 

  • Johnson R, Montgomery D, Jones B, Parker P (2010) Comparing computer experiments for fitting high order polynomial metamodels. J Qual Technol 42(1):86–102

    Article  Google Scholar 

  • Johnson RT, Montgomery DC, Jones B (2011) An empirical study of the prediction performance of space-filling designs. Int J Exp Design Process Optim 2(1):1–18

    Article  Google Scholar 

  • Jones B, Johnson R (2009) Design and analysis for the Gaussian process model. Qual Reliab Eng Int 25(5):515–524

    Article  Google Scholar 

  • Jones DR, Schonlau M, Welch WJ (1998) Efficient global optimization of expensive black-box functions. J Glob Optim 13:455–492

    Article  MathSciNet  Google Scholar 

  • Joseph VR, Hung Y, Sudjianto A (2008) Blind kriging: a new method for developing metamodels. ASME J Mech Des 130:377–381

    Article  Google Scholar 

  • Kackar RN, Harville DA (1984) Approximations for standard errors of estimators of fixed and random effects in mixed linear models. J Am Stat Assoc 87:853–862

    MathSciNet  MATH  Google Scholar 

  • Kennedy MC, O’Hagan A (2000) Predicting the output from a complex computer code when fast approximations are available. Biometrika 87:1–13

    Article  MathSciNet  Google Scholar 

  • Leatherman ER, Dean AM, Santner TJ (2014) Computer experiment designs via particle swarm optimization. In: Melas VB, Mignani S, Monari P, Salmaso L (eds) Topics in statistical simulation: research papers from the 7th international workshop on statistical simulation, vol 114. Springer, Berlin, pp 309–317

    Google Scholar 

  • Leatherman ER, Santner TJ, Dean AM (2018) Computer experiment designs for accurate prediction. Stat Comput 28:739–751

    Article  MathSciNet  Google Scholar 

  • Li B, Genton MG, Sherman M (2008) Testing the covariance structure of multivariate random fields. Biometrika 95:813–829

    Article  MathSciNet  Google Scholar 

  • Liefvendahl M, Stocki R (2006) A study on algorithms for optimization of Latin hypercubes. J Stat Plann Inf 136:3231–3247

    Article  MathSciNet  Google Scholar 

  • Loeppky JL, Sacks J, Welch WJ (2009) Choosing the sample size of a computer experiment: a practical guide. Technometrics 51(4):366–376

    Article  MathSciNet  Google Scholar 

  • Loeppky JL, Moore LM, Williams BJ (2010) Batch sequential designs for computer experiments. J Stat Plann Inf 140(6):1452–1464

    Article  MathSciNet  Google Scholar 

  • MacDonald B, Ranjan P, Chipman H (2015) GPfit: an R package for Gaussian process model fitting using a new optimization algorithm. J Stat Softw 64(12):1–23

    Article  Google Scholar 

  • Mitchell MW, Genton MG, Gumpertz ML (2005) Testing for separability of space-time covariances. Environmetrics 16:819–831

    Article  MathSciNet  Google Scholar 

  • Nelder JA, Mead R (1965) A simplex method for function minimization. Comput J 7:308–313

    Article  MathSciNet  Google Scholar 

  • Patterson HD, Thompson R (1971) Recovery of interblock information when block sizes are unequal. Biometrika 58:545–554

    Article  MathSciNet  Google Scholar 

  • Patterson HD, Thompson R (1974) Maximum likelihood estimation of components of variance. In: Proceedings of the 8th international biometric conference, Washington DC, pp 197–207

    Google Scholar 

  • Qian PZG, Wu CFJ (2008) Bayesian hierarchical modeling for integrating low-accuracy and high-accuracy experiments. Technometrics 50(2):192–204

    Article  MathSciNet  Google Scholar 

  • Qian PZG, Wu H, Wu CFJ (2008) Gaussian Process models for computer experiments with qualitative and quantitative factors. Technometrics 50(3):383–396

    Article  MathSciNet  Google Scholar 

  • Reich BJ, Storlie CB, Bondell HD (2009) Variable selection in Bayesian smoothing spline ANOVA models: application to deterministic computer codes. Technometrics 5(2):110–120

    Article  MathSciNet  Google Scholar 

  • Rinnooy Kan AHG, Timmer GT (1984) A stochastic approach to global optimization. In: Boggs PT, Byrd RH, Schnabel RB (eds) Optimization 84: proceedings of the SIAM conference on numerical optimization. SIAM, Philadelphia, PA pp 245–262

    Google Scholar 

  • Silvestrini RT, Montgomery DC, Jones B (2013) Comparing computer experiments for the Gaussian process model using integrated prediction variance. Qual Eng 25:164–174

    Article  Google Scholar 

  • Stone M (1974) Cross-validatory choice and assessment of statistical predictions (with discussion) (correction: 38:102). J R Stat Soc Ser B 36:111–147

    MATH  Google Scholar 

  • Stone M (1977) An asymptotic equivalence of choice of model by cross-validation and Akaike’s criterion. J R Stat Soc Ser B 39:44–47

    MathSciNet  MATH  Google Scholar 

  • Stripling HF, McCarren RG, Kuranz CC, Grosskopf MJ, Rutter E, Torralva BR (2013) A calibration and data assimilation method using the Bayesian MARS emulator. Ann Nucl Energy 52:103–112

    Article  Google Scholar 

  • Vicario G, Craparotta G, Pistone G (2016) Metamodels in computer experiments: kriging versus artificial neural networks. Qual Reliab Eng Int 32:2055–2065

    Article  Google Scholar 

  • Wahba G (1980) Spline bases, regularization, and generalized cross validation for solving approximation problems with large quantities of noisy data. In: Cheney EW (ed) Approximation theory III. Academic, New York, NY, pp 905–912

    Google Scholar 

  • Welch WJ, Buck RJ, Sacks J, Wynn HP, Mitchell TJ, Morris MD (1992) Screening, predicting, and computer experiments. Technometrics 34:15–25

    Article  Google Scholar 

  • Williams BJ, Santner TJ, Notz WI (2000) Sequential design of computer experiments to minimize integrated response functions. Stat Sinica 10:1133–1152

    MathSciNet  MATH  Google Scholar 

  • Williams BJ, Loeppky JL, Moore LM, Macklem MS (2011) Batch sequential design to achieve predictive maturity with calibrated computer models. Reliab Eng Syst Saf 96(9):1208–1219

    Article  Google Scholar 

  • Xiong Y, Chen W, Apley D, Ding X (2007) A non-stationary covariance-based kriging method for metamodelling in engineering design. Int J Numer Methods Eng 71(6):733–756

    Article  Google Scholar 

  • Zhang Y (2014) Computer experiments with both quantitative and qualitative inputs. PhD thesis, Department of Statistics, The Ohio State University, Columbus, OH

    Google Scholar 

  • Zhou Q, Qian PZG, Wu H, Zhou S (2011) A simple approach to emulation for computer models with qualitative and quantitative factors. Technometrics 53:266–273

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Santner, T.J., Williams, B.J., Notz, W.I. (2018). Empirical Best Linear Unbiased Prediction of Computer Simulator Output. In: The Design and Analysis of Computer Experiments. Springer Series in Statistics. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-8847-1_3

Download citation

Publish with us

Policies and ethics