Skip to main content

Stochastic Process Models for Describing Computer Simulator Output

  • Chapter
  • First Online:
  • 3667 Accesses

Part of the book series: Springer Series in Statistics ((SSS))

Abstract

Recall from Chap. 1 that \(\boldsymbol{x}\) denotes a generic input to our computer simulator and \(y(\boldsymbol{x})\) denotes the associated output. This chapter will introduce several classes of random function models for \(y(\boldsymbol{x})\) that will serve as the core building blocks for the interpolators, experimental designs, calibration, and tuning methodologies that will be introduced in later chapters. The reason that the random function approach is so useful is that accurate prediction based on black box computer simulator output requires a rich class of \(y(\boldsymbol{x})\) options when only a minimal amount might be known about the output function. Indeed, regression mean modeling of simulator output is usually based on a rather arbitrarily selected parametric form.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abrahamsen P (1997) A review of Gaussian random fields and correlation functions. Technical report 917, Norwegian Computing Center, Box 114, Blindern, N0314 Oslo

    Google Scholar 

  • Adler RJ (1981) The geometry of random fields. Wiley, New York, NY

    MATH  Google Scholar 

  • Adler RJ (1990) An introduction to continuity, extrema, and related topics for general Gaussian processes. Institute of Mathematical Statistics, Hayward, CA

    Google Scholar 

  • Banerjee S, Gelfand AE, Finley AO, Sang H (2008) Gaussian predictive process models for large spatial data sets. J R Stat Soc Ser B 70(4):825–848

    Article  MathSciNet  Google Scholar 

  • Bayarri MJ, Berger JO, Paulo R, Sacks J, Cafeo JA, Cavendish J, Lin CH, Tu J (2007) A framework for validation of computer models. Technometrics 49(2):138–154

    Article  MathSciNet  Google Scholar 

  • Berger JO (1985) Statistical decision theory and Bayesian analysis. Springer, New York, NY

    Book  Google Scholar 

  • Berger JO, De Oliveira V, Sansó B (2001) Objective Bayesian analysis of spatially correlated data. J Am Stat Assoc 96:1361–1374

    Article  MathSciNet  Google Scholar 

  • Bliznyuk N, Ruppert D, Shoemaker C, Regis R, Wild S, Mugunthan P (2008) Bayesian calibration and uncertainty analysis for computationally expensive models using optimization and radial basis function approximation. J Comput Graph Stat 17:270–294

    Article  MathSciNet  Google Scholar 

  • Bochner S (1955) Harmonic analysis and the theory of probability. University of California Press, Berkeley, CA

    MATH  Google Scholar 

  • Bornn L, Shaddick G, Zidek JV (2012) Modeling nonstationary processes through dimension expansion. J Am Stat Assoc 107:281–289

    Article  MathSciNet  Google Scholar 

  • Chakraborty A, Mallick BK, McClarren RG, Kuranz CC, Bingham D, Grosskopf MJ, Rutter EM, Stripline HF, Drake RP (2013) Spline-based emulators for radiative shock experiments with measurement error. J Am Stat Assoc 108:411–428

    Article  MathSciNet  Google Scholar 

  • Chen PH, Dean A, Santner T (2014a) Multivariate Gaussian process interpolators with varying-parameter covariance—with an application to Pareto front estimation. Poster Presentation, 2014 meeting of the American Statistical Association

    Google Scholar 

  • Chipman H, George E, McCulloch R (1998) Bayesian CART model search (with discussion). J Am Stat Assoc 93:935–960

    Article  Google Scholar 

  • Chipman H, George E, McCulloch R (2002) Bayesian treed models. Mach Learn 48:303–324

    Article  Google Scholar 

  • Christiansen CL, Morris CN (1997) Hierarchical Poisson regression modeling. J Am Stat Assoc 92:618–632

    Article  MathSciNet  Google Scholar 

  • Conti S, O’Hagan A (2010) Bayesian emulation of complex multi-output and dynamic computer models. J Stat Plann Inf 140(3):640–651

    Article  MathSciNet  Google Scholar 

  • Cramér H, Leadbetter MR (1967) Stationary and related stochastic processes. Wiley, New York, NY

    MATH  Google Scholar 

  • Cressie N, Wikle CK (2011) Statistics for spatio-temporal data. Wiley, New York, NY

    MATH  Google Scholar 

  • Cressie NA (1993) Statistics for spatial data. Wiley, New York, NY

    MATH  Google Scholar 

  • Currin C, Mitchell TJ, Morris MD, Ylvisaker D (1991) Bayesian prediction of deterministic functions, with applications to the design and analysis of computer experiments. J Am Stat Assoc 86:953–963

    Article  MathSciNet  Google Scholar 

  • Doob JL (1953) Stochastic processes. Wiley, New York, NY

    MATH  Google Scholar 

  • Fricker TE, Oakley JE, Urban NM (2013) Multivariate Gaussian process emulators with nonseparable covariance structures. Technometrics 55:47–56

    Article  MathSciNet  Google Scholar 

  • Gelfand AE, Schmidt AM, Banerjee S, Sirmans CF (2004) Nonstationary multivariate process modeling through spatially varying coregionalization (with discussion). Test 13:263–312

    Article  MathSciNet  Google Scholar 

  • Gneiting T (2002) Compactly supported correlation functions. J Multivar Anal 83(2):493–508

    Article  MathSciNet  Google Scholar 

  • Gneiting T, Kleiber W, Schlather M (2010) Matérn cross-covariance functions for multivariate random fields. J Am Stat Assoc 105:1167–1177

    Article  Google Scholar 

  • Gramacy RB, Lee HKH (2008) Bayesian treed Gaussian process models with an application to computer modeling. J Am Stat Assoc 103:1119–1130

    Article  MathSciNet  Google Scholar 

  • Guttorp P, Sampson PD (1994) Methods for estimating heterogeneous spatial covariance functions with environmental applications. In: Patil GP, Rao CR (eds) Handbook of statistics, vol 12. Elsevier Science B.V., Amsterdam, pp 661–689

    Google Scholar 

  • Guttorp P, Meiring W, Sampson PD (1994) A space-time analysis of ground-level ozone data. Environmetrics 5:241–254

    Article  Google Scholar 

  • Haas TC (1995) Local prediction of a spatio-temporal process with an application to wet sulfate deposition. J Am Stat Assoc 90:1189–1199

    Article  Google Scholar 

  • Han G, Santner TJ, Notz WI, Bartel DL (2009a) Prediction for computer experiments having quantitative and qualitative input variables. Technometrics 51(2):278–288

    Article  MathSciNet  Google Scholar 

  • Handcock MS, Stein ML (1993) A Bayesian analysis of kriging. Technometrics 35:403–410

    Article  Google Scholar 

  • Handcock MS, Wallis JR (1994) An approach to statistical spatial-temporal modeling of meterological fields. J Am Stat Assoc 89:368–390

    Article  Google Scholar 

  • Hastie T, Tibshirani R, Friedman J (2001) The elements of statistical learning: data mining, inference, and prediction. Springer, New York, NY

    Book  Google Scholar 

  • Higdon D, Gattiker J, Williams B, Rightley M (2008) Computer model calibration using high dimensional output. J Am Stat Assoc 103:570–583

    Article  MathSciNet  Google Scholar 

  • Higdon DM (1998) A process-convolution approach to modelling temperatures in the North Atlantic Ocean (with discussion). Environ Ecol Stat 5:173–192

    Article  Google Scholar 

  • Higdon DM, Swall J, Kern JC (1999) Non-stationary spatial modeling. In: Bernardo JM, Berger JO, Dawid AP, Smith AFM (eds) Bayesian statistics, vol 6. Oxford University Press, Oxford, pp 761–768

    Google Scholar 

  • Journel AG, Huijbregts CJ (1978) Mining geostatistics. Academic, San Diego, CA

    Google Scholar 

  • Kaufman C, Bingham D, Habib S, Heitmann K, Frieman J (2011) Efficient emulators of computer experiments using compactly supported correlation functions, with an application to cosmology. Ann Appl Stat 5:2470–2492

    Article  MathSciNet  Google Scholar 

  • Kennedy MC, O’Hagan A (2000) Predicting the output from a complex computer code when fast approximations are available. Biometrika 87:1–13

    Article  MathSciNet  Google Scholar 

  • Kreyszig E (1999) Advanced engineering mathematics. Wiley, New York, NY

    MATH  Google Scholar 

  • Loeppky JL, Sacks J, Welch WJ (2009) Choosing the sample size of a computer experiment: a practical guide. Technometrics 51(4):366–376

    Article  MathSciNet  Google Scholar 

  • MacDonald B, Ranjan P, Chipman H (2015) GPfit: an R package for Gaussian process model fitting using a new optimization algorithm. J Stat Softw 64(12):1–23

    Article  Google Scholar 

  • Matérn B (1960) Spatial variation. PhD thesis, Meddelanden fran Statens Skogsforskningsinstitut, vol 49, Num 5

    Google Scholar 

  • Matérn B (1986) Spatial variation, 2nd edn. Springer, New York, NY

    Book  Google Scholar 

  • Matheron G (1963) Principles of geostatistics. Econ Geol 58:1246–1266

    Article  Google Scholar 

  • McMillan NJ, Sacks J, Welch WJ, Gao F (1999) Analysis of protein activity data by Gaussian stochastic process models. J Biopharm Stat 9:145–160

    Article  Google Scholar 

  • Mitchell TJ, Morris MD, Ylvisaker D (1990) Existence of smoothed stationary processes on an interval. Stoch Process Appl 35:109–119

    Article  MathSciNet  Google Scholar 

  • Mitchell TJ, Morris MD, Ylvisaker D (1994) Asymptotically optimum experimental designs for prediction of deterministic functions given derivative information. J Stat Plann Inf 41:377–389

    Article  MathSciNet  Google Scholar 

  • Mockus J, Eddy W, Mockus A, Mockus L, Reklaitis G (1997) Bayesian heuristic approach to discrete and global optimization: algorithms, visualization, software, and applications. Kluwer Academic, New York, NY

    Book  Google Scholar 

  • Morris MD (2012) Gaussian surrogates for computer models with time-varying inputs and outputs. Technometrics 54(1):42–50

    Article  MathSciNet  Google Scholar 

  • Morris MD (2014) Maximin distance optimal designs for computer experiments with time-varying inputs and outputs. J Stat Plann Inf 144:63–68

    Article  MathSciNet  Google Scholar 

  • Morris MD, Mitchell TJ, Ylvisaker D (1993) Bayesian design and analysis of computer experiments: use of derivatives in surface prediction. Technometrics 35:243–255

    Article  MathSciNet  Google Scholar 

  • Oakley JE (2002) Eliciting Gaussian process priors for complex computer codes. Statistician 51:81–97

    MathSciNet  Google Scholar 

  • O’Hagan A (1994) Kendall’s advanced theory of statistics. Volume 2B: Bayesian inference. Cambridge University Press, Cambridge

    Google Scholar 

  • Ong K, Santner T, Bartel D (2008) Robust design for acetabular cup stability accounting for patient and surgical variability. J Biomech Eng 130(031001):1–11

    Google Scholar 

  • Parzen E (1962) Stochastic processes. Holden-Day, San Francisco, CA

    MATH  Google Scholar 

  • Qian PZG, Wu H, Wu CFJ (2008) Gaussian Process models for computer experiments with qualitative and quantitative factors. Technometrics 50(3):383–396

    Article  MathSciNet  Google Scholar 

  • Reese CS, Wilson AG, Hamada M, Martz HF, Ryan KJ (2004) Integrated analysis of computer and physical experiments. Technometrics 46(2):153–164

    Article  MathSciNet  Google Scholar 

  • Ripley BD (1981) Spatial statistics. Wiley, New York, NY

    Book  Google Scholar 

  • Rodríguez-Iturbe I, Mejía JM (1974) The design of rainfall networks in time and space. Water Resour Res 10:713–728

    Article  Google Scholar 

  • Sacks J, Welch WJ, Mitchell TJ, Wynn HP (1989b) Design and analysis of computer experiments. Stat Sci 4:409–423

    Article  MathSciNet  Google Scholar 

  • Sampson PD, Guttorp P (1992) Nonparametric estimation of nonstationary covariance structure. J Am Stat Assoc 87:108–119

    Article  Google Scholar 

  • Stein ML (1999) Interpolation of spatial data: some theory for kriging. Springer, New York, NY

    Book  Google Scholar 

  • Stein ML (2008) A modeling approach for large spatial datasets. J Korean Stat Soc 37:3–10

    Article  MathSciNet  Google Scholar 

  • Svenson J, Santner T (2016) Multiobjective optimization of expensive-to-evaluate deterministic computer simulator models. Comput Stat Data Anal 94:250–264

    Article  MathSciNet  Google Scholar 

  • Vecchia AV (1988) Estimation and identification for continuous spatial processes. J R Stat Soc Ser B 50:297–312

    MathSciNet  Google Scholar 

  • Ver Hoef JM, Barry RP (1998) Constructing and fitting models for cokriging and multivariable spatial prediction. J Stat Plann Inf 69:275–294

    Article  MathSciNet  Google Scholar 

  • Wallstrom TC (2007) Estimating replicate variation. Technical report LA-UR-07-4412, Los Alamos National Laboratory, Los Alamos, NM

    Google Scholar 

  • Yaglom AM (1986) Correlation theory of stationary and related random functions (Volume II). Springer, New York, NY

    Google Scholar 

  • Zhang Y (2014) Computer experiments with both quantitative and qualitative inputs. PhD thesis, Department of Statistics, The Ohio State University, Columbus, OH

    Google Scholar 

  • Zhou Q, Qian PZG, Wu H, Zhou S (2011) A simple approach to emulation for computer models with qualitative and quantitative factors. Technometrics 53:266–273

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Santner, T.J., Williams, B.J., Notz, W.I. (2018). Stochastic Process Models for Describing Computer Simulator Output. In: The Design and Analysis of Computer Experiments. Springer Series in Statistics. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-8847-1_2

Download citation

Publish with us

Policies and ethics