Skip to main content

Optimization of a Fractional Differential Equation

  • Chapter
Frontiers in PDE-Constrained Optimization

Part of the book series: The IMA Volumes in Mathematics and its Applications ((IMA,volume 163))

  • 1655 Accesses

Abstract

We consider a linear quadratic optimization problem where the state is governed by a fractional ordinary differential equation. We also consider control constraints. We show existence and uniqueness of an optimal state–control pair and propose a method to approximate it. Due to the low regularity of the solution to the state equation, rates of convergence cannot be proved unless problematic assumptions are made. Instead, we appeal to the theory of Γ-convergence to show the convergence of our scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. N.I. Achieser. Theory of approximation. Dover Publications, Inc., New York, 1992. Translated from the Russian and with a preface by Charles J. Hyman, Reprint of the 1956 English translation.

    Google Scholar 

  2. O.P. Agrawal. A general formulation and solution scheme for fractional optimal control problems. Nonlinear Dynam., 38(1–4):323–337, 2004.

    Article  MathSciNet  Google Scholar 

  3. O.P. Agrawal. A general finite element formulation for fractional variational problems. J. Math. Anal. Appl., 337(1):1–12, 2008.

    Article  MathSciNet  Google Scholar 

  4. H. Antil, E. Otárola, and A.J. Salgado. A space-time fractional optimal control problem: analysis and discretization. SIAM J. Control Optim., 54(3):1295–1328, 2016.

    Article  MathSciNet  Google Scholar 

  5. M. Caputo. Diffusion of fluids in porous media with memory. Geothermics, 28(1):113 – 130, 1999.

    Article  Google Scholar 

  6. A. Cartea and D. del Castillo-Negrete. Fractional diffusion models of option prices in markets with jumps. Physica A, 374:749–763, 2007.

    Article  Google Scholar 

  7. G. Dal Maso. An introduction toΓ-convergence. Progress in Nonlinear Differential Equations and their Applications, 8. Birkhäuser Boston, Inc., Boston, MA, 1993.

    Google Scholar 

  8. L. Debnath. Fractional integral and fractional differential equations in fluid mechanics. Fract. Calc. Appl. Anal., 6(2):119–155, 2003.

    MathSciNet  MATH  Google Scholar 

  9. D. del Castillo-Negrete. Fractional diffusion models of nonlocal transport. Phys. Plasmas, 13(8):082308, 16, 2006.

    Google Scholar 

  10. D. del Castillo-Negrete, B. A. Carreras, and V. E. Lynch. Nondiffusive transport in plasma turbulence: A fractional diffusion approach. Phys. Rev. Lett., 94:065003, Feb 2005.

    Article  Google Scholar 

  11. K. Diethelm. The analysis of fractional differential equations, volume 2004 of Lecture Notes in Mathematics. Springer-Verlag, Berlin, 2010. An application-oriented exposition using differential operators of Caputo type.

    Google Scholar 

  12. T.M. Flett. A note on some inequalities. Proc. Glasgow Math. Assoc., 4:7–15 (1958), 1958.

    MathSciNet  Google Scholar 

  13. G.B. Folland. Real analysis. John Wiley & Sons, Inc., New York, 1984.

    MATH  Google Scholar 

  14. R. Gorenflo, A.A. Kilbas, F. Mainardi, and S.V. Rogosin. Mittag-Leffler functions, related topics and applications. Springer Monographs in Mathematics. Springer, Heidelberg, 2014.

    Google Scholar 

  15. R. Gorenflo, J. Loutchko, and Y. Luchko. Computation of the Mittag-Leffler function Eα,β(z) and its derivative. Fract. Calc. Appl. Anal., 5(4):491–518, 2002. Dedicated to the 60th anniversary of Prof. Francesco Mainardi.

    Google Scholar 

  16. B. Jin, R. Lazarov, and Z. Zhou. An analysis of the L1 scheme for the subdiffusion equation with nonsmooth data. IMA J. Numer. Anal., 36(1):197–221, 2016.

    MathSciNet  MATH  Google Scholar 

  17. J.-P. Kahane. Teoría constructiva de funciones. Universidad de Buenos Aires, Buenos Aires], 1961:111, 1961.

    MATH  Google Scholar 

  18. L. V. Kantorovich and G. P. Akilov. Funktsionalnyi analiz. “Nauka”, Moscow, third edition, 1984.

    Google Scholar 

  19. A. A. Kilbas, H. M. Srivastava, and J. J. Trujillo. Theory and applications of fractional differential equations, volume 204 of North-Holland Mathematics Studies. Elsevier Science B.V., Amsterdam, 2006.

    Book  Google Scholar 

  20. M.A. Krasnosel’skiı̆ and Ja.B. Rutickiı̆. Convex functions and Orlicz spaces. Translated from the first Russian edition by Leo F. Boron. P. Noordhoff Ltd., Groningen, 1961.

    Google Scholar 

  21. Y. Lin, X. Li, and C. Xu. Finite difference/spectral approximations for the fractional cable equation. Math. Comp., 80(275):1369–1396, 2011.

    Article  MathSciNet  Google Scholar 

  22. Y. Lin and C. Xu. Finite difference/spectral approximations for the time-fractional diffusion equation. J. Comput. Phys., 225(2):1533–1552, 2007.

    Article  MathSciNet  Google Scholar 

  23. J.-L. Lions. Optimal control of systems governed by partial differential equations. Translated from the French by S. K. Mitter. Die Grundlehren der mathematischen Wissenschaften, Band 170. Springer-Verlag, New York-Berlin, 1971.

    Google Scholar 

  24. A. Lotfi and S. A. Yousefi. A numerical technique for solving a class of fractional variational problems. J. Comput. Appl. Math., 237(1):633–643, 2013.

    Article  MathSciNet  Google Scholar 

  25. W. McLean. Regularity of solutions to a time-fractional diffusion equation. ANZIAM J., 52(2):123–138, 2010.

    Article  MathSciNet  Google Scholar 

  26. R.H. Nochetto, E. Otárola, and A.J. Salgado. A PDE approach to space-time fractional parabolic problems. SIAM J. Numer. Anal., 54(2):848–873, 2016.

    Article  MathSciNet  Google Scholar 

  27. K. Sakamoto and M. Yamamoto. Initial value/boundary value problems for fractional diffusion-wave equations and applications to some inverse problems. J. Math. Anal. Appl., 382(1): 426–447, 2011.

    Article  MathSciNet  Google Scholar 

  28. S. G. Samko, A. A. Kilbas, and O. I. Marichev. Fractional integrals and derivatives. Gordon and Breach Science Publishers, Yverdon, 1993. Theory and applications, Edited and with a foreword by S. M. Nikol’skiı̆, Translated from the 1987 Russian original, Revised by the authors.

    Google Scholar 

  29. Z. Sun and X. Wu. A fully discrete difference scheme for a diffusion-wave system. Appl. Numer. Math., 56(2):193–209, 2006.

    Article  MathSciNet  Google Scholar 

  30. C. Tricaud and Y. Chen. An approximate method for numerically solving fractional order optimal control problems of general form. Comput. Math. Appl., 59(5):1644–1655, 2010.

    Article  MathSciNet  Google Scholar 

  31. F. Tröltzsch. Optimal control of partial differential equations, volume 112 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, 2010. Theory, methods and applications, Translated from the 2005 German original by Jürgen Sprekels.

    Google Scholar 

  32. X. Ye and C. Xu. Spectral optimization methods for the time fractional diffusion inverse problem. Numer. Math. Theory Methods Appl., 6(3):499–516, 2013.

    Article  MathSciNet  Google Scholar 

  33. X. Ye and C. Xu. A spectral method for optimal control problems governed by the time fractional diffusion equation with control constraints. In Spectral and high order methods for partial differential equations—ICOSAHOM 2012, volume 95 of Lect. Notes Comput. Sci. Eng., pages 403–414. Springer, Cham, 2014.

    Google Scholar 

Download references

Acknowledgements

E. Otárola was supported in part by CONICYT through FONDECYT project 3160201. A.J. Salgado was supported in part by NSF grant DMS-1418784.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abner J. Salgado .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this chapter

Cite this chapter

Otárola, E., Salgado, A.J. (2018). Optimization of a Fractional Differential Equation. In: Antil, H., Kouri, D.P., Lacasse, MD., Ridzal, D. (eds) Frontiers in PDE-Constrained Optimization. The IMA Volumes in Mathematics and its Applications, vol 163. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-8636-1_8

Download citation

Publish with us

Policies and ethics