Skip to main content

Full-Wavefield Inversion: An Extreme-Scale PDE-Constrained Optimization Problem

  • Chapter
Frontiers in PDE-Constrained Optimization

Part of the book series: The IMA Volumes in Mathematics and its Applications ((IMA,volume 163))

Abstract

Full-wavefield inversion is a geophysical method aimed at estimating the mechanical properties of the earth subsurface. This parameter estimation problem is solved iteratively using optimization techniques aimed at minimizing some measure of misfit between computer-simulated data and real data measured in a seismic survey. This PDE-constrained optimization problem poses many challenges due to the extreme size of the surveys considered. Practical issues related to the physical fidelity and numerical accuracy of the forward problem are presented. Also, issues related to the inverse problem such as the limitations of the optimization methods employed, and the many heuristic strategies used to obtain a solution are discussed. The goal of this paper is to demonstrate some of the progress achieved over the last decades while highlighting the many areas where further investigation could bring this method to full technical maturity. It is our hope that this paper, together with other contributions in this book, will motivate a new generation of researchers to contribute to this broad and challenging research area.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In reality, cables will not be straight but will follow ocean currents. The hardware and controls required to keep the cables apart and monitor their locations are a real engineering accomplishment.

  2. 2.

    This relation can be derived as follows. For a cubic survey of dimensions L3, the number of spatial points Nx to compute will scale as L3h3, where h is the discretization length set by h ∼ λo = vfo. If using explicit time integration, the number of time integration steps Nt = TΔt, where T is the listening time, and Δt the time step. As \(\varDelta t \sim h/v \sim f_o^{-1}\), then the number of operations \(N_{op}\sim N_x N_t \sim f_o^4\), and therefore \({\mathcal {O}}(f_o^4)\). For larger fo, the distance between the different shots at the earth surface also need to be smaller to maintain resolution, and therefore more shots are used (and need to be computed), resulting in \({\mathcal {O}}(f_o^6)\) when the inversion is performed separately for each source.

  3. 3.

    We purposely picked the word best to emphasize that the problem has nonunique solutions and that the chosen solution might be the result of applying some additional measures of merit, sometimes even including some subjective domain expertise.

  4. 4.

    A third element called model qualification determines the level of adequacy of the model for the intended application. This aspect will not be discussed here.

  5. 5.

    We will be using the Einstein convention where repeated indices imply a sum over these indices.

  6. 6.

    It is interesting to note that Green, Cauchy, and Poisson were part of a lengthy controversy in which the last two argued that the number of coefficients could not exceed 15. See [93] and references therein.

  7. 7.

    In material science, these two end-value members for binary composite materials are termed the Reuss and Voigt averages, respectively. For more details, see, for example, [66, 67].

  8. 8.

    Nepers are not part of the SI units. They have dimensionless units and refer to the natural logarithm of ratios of measurements.

  9. 9.

    Note that ultrasonic lab measurements are typically performed in the MHz range while the frequency bandwidth used in reflection seismology covers about 2 orders of magnitude ranging from 1 Hz to 100 Hz.

  10. 10.

    To be more precise, in some cases the dimensionality of u may be higher than the number of spatial points when the numerical method introduces additional degrees of freedom, such as in the case of the discontinuous-Galerkin method.

  11. 11.

    Stability criterion named after Courant, Friedrichs, and Lewy stating that vΔt ≤ h.

  12. 12.

    Graphics Processing Units and Field-Programmable Gate Arrays.

  13. 13.

    This simple approach is very useful, however, for providing test cases for verifying gradient computations.

  14. 14.

    By the notation \(L^2(\mathbb {R}^a \times \left [0,\mathrm{T}\right ];\mathbb {R}^b)\), we express a b-dimensional vector defined over an a-dimensional space over a time interval [0, T], with a norm that is square-integrable over \(\mathbb {R}^a\times \left [0,\mathrm{T}\right ]\).

  15. 15.

    Current generation of geophones uses accelerometers that can measure the three orthogonal components of acceleration. Such receivers are termed multicomponents or 3-C.

  16. 16.

    This relation is also referred to as the Lagrange identity.

  17. 17.

    See, e.g., Equation (32). A similar result is obtained for the acoustic wave equation as derived in joint tutorial [13].

  18. 18.

    Some authors refer to this operation as a zero-lag correlation.

  19. 19.

    In the derivation for a simple 1-D acoustic wave equation, one obtains (see, e.g., [13]) \(\mathbf {{R}(\kappa )} = \frac {1}{\kappa ^2}\frac {\partial ^2}{\partial t^2}\). In practical computations, using the linearity of the wave equation, it is more efficient to apply this operator to the source time functions.

  20. 20.

    Also less affectionately known as trivially or embarrassingly parallel problems.

  21. 21.

    Also called Taylor’s formula with remainder or the mean-value theorem when truncated to first order. See, e.g., [46]. At second order, it states that \(f(\mathbf {x+h}) = f(\mathbf {x}) + \boldsymbol {\nabla } f(\mathbf {x})^T \mathbf {h} + \frac {1}{2}{\mathbf {h}}^T \boldsymbol {\nabla }^2 f(\mathbf {x} + t\mathbf {h})\mathbf {h} \), where t ∈ (0,  1).

  22. 22.

    Sometimes also called true model, or target model.

  23. 23.

    Named from its inventors Broyden, Fletcher, Goldfarb, and Shanno.

  24. 24.

    Including the ability to use Gauss-Newton methods for the inversion.

  25. 25.

    Also called Wasserstein metric, or more descriptively earth mover’s distance.

  26. 26.

    Note that \(\mathcal {R}^{(1)}\) is not differentiable with respect to m. However, some differentiable approximations can be used. See [106] for more detail.

  27. 27.

    For example, nth-order Tikhonov, Tikhonov-Miller, Phillips-Twomey, Total Variation, etc.

  28. 28.

    These curves are log-log plots generated by plotting the misfit value \(\left | \mathbf {F}({\mathbf {m}}_{\mathbf {n}}) - {\mathbf {d}}^\dag \right |\) as a function of the value of the residual \(\mathcal {R}({\mathbf {m}}_{\mathbf {n}}; \beta )/\beta \) at the “final” nth iteration obtained with different values of β.

  29. 29.

    By multiparameter, we refer to systems being described by multiple, distinct, spatially varying physical parameters such as density, bulk, and shear moduli for a three-parameter inversion.

  30. 30.

    Some receivers (termed multicomponent) can provide vectorial information on the displacement that can be exploited through a continuation strategy.

  31. 31.

    Term borrowed from telecommunications describing signals transferring from one channel to another due to unintentional coupling (e.g., poor electromagnetic insulation).

References

  1. M. Ainsworth and H. A. Wajid, Dispersive and dissipative behavior of the spectral element method, SIAM Journal on Numerical Analysis, 47 (2009), pp. 3910–3937.

    Article  MathSciNet  Google Scholar 

  2. V. Akçelik, H. Denli, A. Kanevsky, K. K. Patel, L. White, and M.-D. Lacasse, Multiparameter material model and source signature full waveform inversion, in SEG Technical Program Expanded Abstracts, San Antonio, 2011, Society of Exploration Geophysics, p. 2406.

    Google Scholar 

  3. K. Aki and P. G. Richards, Quantitative Seismology, Theory and Methods, Freeman, San Francisco, 1980.

    Google Scholar 

  4. T. Alkalifah and R.-É. Plessix, A recipe for practical full-waveform inversion in anisotropic media: An analytical parameter resolution study, Geophysics, 79 (2014), p. R91.

    Article  Google Scholar 

  5. J. E. Anderson, L. Tan, and D. Wang, Time-reversal checkpointing methods for RTM and FWI, Geophysics, 77 (2012), p. S93.

    Article  Google Scholar 

  6. G. E. Backus, Long-wave elastic anisotropy produced by horizontal layering, J. Geophys. Res., 11 (1962), p. 4427.

    Article  Google Scholar 

  7. R. Bansal, J. R. Krebs, P. Routh, S. Lee, J. E. Anderson, A. Baumstein, A. Mullur, S. Lazaratos, I. Chikichev, and D. McAdow, Simultaneous-source full-wavefield inversion, The Leading Edge, 32 (2013), p. 1100.

    Article  Google Scholar 

  8. R. A. Bartlett, D. M. Gay, and E. T. Phipps, Automatic differentiation of C++ codes for large-scale scientific computing, in Computational Science – ICCS 2006, V. N. Alexandrov, G. D. van Albada, P. M. A. Sloot, and J. Dongarra, eds., Springer, 2006, pp. 525–532.

    Google Scholar 

  9. C. C. Bates, T. F. Gaskell, and R. B. Rice, Geophysics in the Affair of Man: A Personalized History of exploration geophysics and its allied sciences of seismology and oceanography, Pergamon Press, Oxford, 1982.

    Google Scholar 

  10. J. T. Betts and S. L. Campbell, Discretize then optimize, in Mathematics for industry: Challenger and Frontiers — A Process Review: Practice and Theory, D. R. Fergusson and T. J. Peters, eds., Society of Industrial and Applied Mathematics, Toronto, 2003, p. 140.

    Google Scholar 

  11. R. E. Bixby, A brief history of linear and mixed-integer programming computation, in Documenta Mathematica – Extra Volume ISMP, Berlin, 2012, 21st International Symposium on Mathematical Programming, pp. 107–121.

    Google Scholar 

  12. A. Bourgeois, P. Lailly, and R. Vesteeg, The Marmousi model, in The Marmousi experience, R. Versteeg and G. Grau, eds., Paris, 1991, IFP/Technip.

    Google Scholar 

  13. J. Brandman, H. Denli, and D. Trenev, Introduction to PDE-constrained optimization in the oil and gas industry, in Frontiers in PDE-Constrained Optimization, H. Antil, M.-D. Lacasse, D. Ridzal, and D. P. Kouri, eds., Berlin, 2017, Springer.

    Google Scholar 

  14. R. Brossier, L. Métivier, S. Operto, A. Ribodetti, and J. Vireux, VTI acoustic equations: a first-order symmetrical PDE, tech. report, 2013.

    Google Scholar 

  15. C. Bunks, F. M. Salek, S. Zaleski, and G. Chavent, Multiscale seismic waveform inversion, Geophysics, 60 (1995), p. 1457.

    Article  Google Scholar 

  16. C. Burstedde and O. Ghattas, Algorithmic strategies for full waveform inversion: 1D experiments, Geophysics, 74 (2009), pp. WCC37–WCC46.

    Article  Google Scholar 

  17. V. Cerveny, Seismic Ray Theory, Cambridge University Press, Cambridge, 2001.

    Book  Google Scholar 

  18. G. Chavent, Identification of functional parameters in partial differential equations, in Identification of functional parameters in distributed systems, R. E. Goodson and M. Polis, eds., American Society of Mechanical Engineers, 1974, p. 31.

    Google Scholar 

  19. G. Chavent, Nonlinear Least Squares for Inverse Problems, Springer, Berlin, 2006.

    MATH  Google Scholar 

  20. J. Claerbout and D. Nichols, Spectral preconditioning, Stanford Exploration Project Report, 82 (1994), pp. 183–186.

    Google Scholar 

  21. R. Clapp, Reverse-time migration: Saving the boundaries, in SEP – 138, 2009, p. 29.

    Google Scholar 

  22. S. S. Collis, C. C. Ober, and B. G. van Bloemen Waanders, Unstructured discontinuous Galerkin for seismic inversion, in SEG Technical Program Expanded Abstracts, Denver, 2010, Society of Exploration Geophysics, p. 2767.

    Google Scholar 

  23. D. Colton and R. Kress, Inverse acoustic and electromagnetic scattering theory, Springer, New York, 3 ed., 2013.

    Book  Google Scholar 

  24. D. Dagnino, V. Sallarès, and C. R. Ranero, Scale- and parameter-adaptive model-based gradient pre-conditioner for elastic full-waveform inversion, Geophysical Journal International, 198 (2014), p. 1130.

    Article  Google Scholar 

  25. H. Denli, V. Akçelik, A. Kanevsky, D. Trenev, L. White, and M.-D. Lacasse, Full-wavefield inversion of acoustic wave velocity and attenuation, in SEG Technical Program Expanded Abstracts, Houston, 2013, Society of Exploration Geophysics, p. 980.

    Google Scholar 

  26. H. Denli and A. Kanevsky, Fast viscoacoustic and viscoelastic full wavefield inversion, Dec 2015, http://www.google.com/patents/US20150362622. US Patent App. 14/693,464.

  27. M. Dumbser and M. Käser, An arbitrary high-order discontinuous Galerkin method for elastic waves on unstructured meshes — ii. the three-dimensional isotropic case, Geophys. J. Int., 167 (2006), p. 319.

    Google Scholar 

  28. H. Emmerich and M. Korn, Incorporation of attenuation into time-domain computations of seismic wave fields, Geophysics, 52 (1987), p. 1252.

    Article  Google Scholar 

  29. B. Engquist and B. D. Frosse, Application of the Wasserstein metric to seismic signals, 2013. arXiv 1311.4581 [math-ph].

    Google Scholar 

  30. B. Engquist, B. D. Frosse, and Y. Yang, Optimal transport for seismic full waveform inversion, 2016. arXiv:1602.01540 [physics.geo-ph].

    Google Scholar 

  31. V. Étienne, E. Chaljub, J. Virieux, and N. Glinsky, An h-p adaptive discontinuous Galerkin finite-element method for 3-D elastic wave modeling, Geophys. J. Int., 183 (2010), p. 941.

    Article  Google Scholar 

  32. P. M. Farrell, D. A. Ham, S. W. Funke, and M. E. Runkes, Automated derivation of the adjoint of high-level transient finite element programs, SIAM Journal of Scientific Computing, 35 (2013), p. C369.

    Article  MathSciNet  Google Scholar 

  33. M. Fehler and P. J. Keliher, SEAM Phase I: Challenges of Subsalt Imaging in Tertiary Basins, with Emphasis on Deepwater Gulf of Mexico, Society of Exploration Geophysicists, Tulsa, 2011.

    Google Scholar 

  34. A. Fichtner, Full Seismic Waveform Modelling and Inversion, Springer, Berlin, 2011.

    Book  Google Scholar 

  35. W. I. Futterman, Dispersive body waves, J. Geophys. Res., 67 (1962), pp. 5279–5291.

    Article  MathSciNet  Google Scholar 

  36. O. Gauthier, J. Virieux, and A. Tarantola, Two-dimensional nonlinear inversion of seismic waveforms: Numerical results, Geophysics, 5 (1986), p. 1387.

    Article  Google Scholar 

  37. R. W. Graves and S. M. Day, Stability and accuracy analysis of coarse-grain viscoelastic simulations, Bulletin Seismological Society of America, 93 (2003), p. 283.

    Article  Google Scholar 

  38. A. Griewank and A. Walther, Revolve: An implementation of checkpointing for the reverse or adjoint mode of computational differentiation, Trans. Math. Software, 26 (2000), p. 19.

    Article  Google Scholar 

  39. A. Griewank and A. Walther, Evaluating Derivatives — Principles and Techniques of Algorithmic Differentiation, Society of Industrial and Applied Mathematics, Philadelphia, second ed., 2008.

    Google Scholar 

  40. P. C. Hansen and D. P. O’Leary, The use of the L-curve in the regularization of discrete ill-posed problems, SIAM J. Sci. Comput., 14 (1993), p. 1487.

    Article  MathSciNet  Google Scholar 

  41. J. S. Hesthaven and T. Warburton, Nodal Discontinuous Galerkin Methods, Springer, Berlin, 2008.

    Book  Google Scholar 

  42. B. Hofmann and O. Scherzer, Factors influencing the ill-posedness on nonlinear problems, Inverse Problems, 10 (1994), p. 1277.

    Article  MathSciNet  Google Scholar 

  43. B. Hofmann and M. Yamamoto, On the interplay of source conditions and variational inequalities for nonlinear ill-posed problems, Applicable Analysis, 89 (2010), p. 1705.

    Article  MathSciNet  Google Scholar 

  44. H. Igel, Computational Seismology: A Practical Introduction, Oxford University Press, Oxford, 2017.

    Google Scholar 

  45. M. Jakobsen and B. Ursin, Full waveform inversion in the frequency domain using direct iterative t-matrix methods, J. Geophys. Engineer., 12 (2015), p. 400.

    Article  Google Scholar 

  46. W. Kaplan, Advanced Calculus, Addison Wesley, Reading, Massachusetts, second ed., 1973.

    Google Scholar 

  47. M. Käser, J. de la Puente, A.-A. Gabriel, and other contributors, seisol. http://www.seissol.org/, Retrieved March 1, 2018.

  48. E. Kjartansson, Constant Q-wave propagation and attenuation, Journal of Geophysical Research, 84 (1979), p. 4737.

    Article  Google Scholar 

  49. L. Knopoff, Q, Rev. Geophysics, 2 (1964), p. 625.

    Article  Google Scholar 

  50. H. Kolsky, The propagation of stress pulses in viscoelastic solids, Phys. Mag., 1 (1956), pp. 693–710.

    Article  Google Scholar 

  51. D. Komatitsch, Méthodes spectrales et éléments spectraux pour l’équation de l’élastodynamique 2D et 3D en milieu hétérogènes, PhD thesis, Institut de Physique du Globe de Paris, France, 1997.

    Google Scholar 

  52. D. Komatitsch, J. Tromp, and other contributors, specfem3d. http://geodynamics.org/cig/software/specfem3d, Retrieved March 1, 2018.

  53. J. R. Krebs, J. E. Anderson, D. Hinkley, R. Neelamani, S. Lee, A. Baumstein, and M.-D. Lacasse, Fast full-wavefield seismic inversion using encoded sources, Geophysics, 74 (2009), p. WCC177.

    Article  Google Scholar 

  54. J. Kristek and P. Moczo, Seismic wave propagation in viscoelastic media with material discontinuities — a 3D 4th-order staggered-grid finite-difference modeling, Bulletin Seismological Society of America, 93 (2003), p. 2273.

    Article  Google Scholar 

  55. P. Lailly, The seismic inverse problem as a sequence of before-stack migrations, in Conference on Inverse Scattering: Theory and Applications, J. B. Bednar, R. Redner, E. Robinson, and A. Weglein, eds., Philadelphia, 1983, Society of Industrial and Applied Mathematics, p. 206.

    Google Scholar 

  56. L. D. Landau and E. M. Lifshitz, Theory of Elasticity, Pergamon, Oxford, 1959.

    MATH  Google Scholar 

  57. S. Lazaratos, I. Chikichev, and Y. Wang, Improving convergence rate of full wavefield inversion using spectral shaping, in SEG Technical Program Expanded Abstracts, San Antonio, 2011, Society of Exploration Geophysics, p. 2428.

    Google Scholar 

  58. R. J. Leveque, Finite Volume Methods for Hyperbolic Problems, Cambridge University Press, New York, 2002.

    Book  Google Scholar 

  59. A. Logg, K. A. Mardal, and G. N. Wells, eds., The Fenics project, Lecture notes in computational science and engineering, Springer, Berlin, 2012.

    Google Scholar 

  60. C. C. Lopez, Accélération et régularisation de la méthode d’inversion des formes d’ondes complètes en exploration sismique, PhD thesis, Université de Nice-Sophia Antipolis, 2014.

    Google Scholar 

  61. R. Madariaga, Seismic source: Theory, in Encyclopedia of Earth Sciences Series – Geophysics, C. W. Finkl, ed., Springer, Boston, MA, 1989, pp. 1129–1133.

    Google Scholar 

  62. G. Marchuk, V. Shutyaev, and G. Bocharov, Adjoint equations and analysis of complex systems: Application to virus infection modelling, J. Computational and Applied Mathematics, 184 (2005), pp. 177–204.

    Article  MathSciNet  Google Scholar 

  63. G. I. Marchuk, Adjoint Equations and Analysis of Complex Systems, Springer, Netherlands, 1995.

    Book  Google Scholar 

  64. G. I. Marchuk, V. I. Agoshkov, and V. P. Shutyaev, Adjoint equations and perturbations algorithms in nonlinear problems, CRC Press, Boca Raton, 1996.

    Google Scholar 

  65. G. S. Martin, R. Wiley, and K. J. Marfurt, Marnousi2: An elastic upgrade to Marmousi, The Leading Edge, 25 (2006), p. 156.

    Article  Google Scholar 

  66. Mavko, Quantitative seismic interpretation, Springer, 2006.

    Google Scholar 

  67. G. Mavko, T. Mukerji, and J. Dvorkin, The Rock Physics Handbook, Cambridge University Press, Cambridge, 1998.

    Google Scholar 

  68. L. Métivier, F. Bretaudeau, R. Brossier, S. Operto, and J. Virieux, Full waveform inversion and the truncated Newton method: quantitative imaging of complex subsurface structures, Geophysical Prospecting, 62 (2014), p. 1353.

    Article  Google Scholar 

  69. L. Metivier and J. Virieux, Optimal transport theory, in Frontiers in PDE-Constrained Optimization, H. Antil, M.-D. Lacasse, D. Ridzal, and D. P. Kouri, eds., Berlin, 2017, Springer.

    Google Scholar 

  70. P. Moczo and J. Kristek, On the rheological models in the time-domain methods for seismic wave propagation, Geophysical Review Letters, 32 (2005), p. L01306.

    Google Scholar 

  71. P. Moczo, J. Kristek, and P. Franek, Lectures notes on rheological models. http://www.fyzikazeme.sk/mainpage/stud_mat/Moczo_Kristek_Franek_Rheological_Models.pdf, 2006. retrieved March 1, 2018.

  72. R. Modrak and J. Tromp, Seismic waveform inversion best practices, Geophysical Journal International, 206 (2016), p. 1864.

    Article  Google Scholar 

  73. P. R. Mora, Non-linear two-dimensional elastic inversion of multi-offset seismic data, Geophysics, 52 (1987), p. 1211.

    Article  Google Scholar 

  74. J. Nocedal and S. J. Wright, Numerical optimization, Springer Series in Operations Research and Financial Engineering, Springer, Berlin, 2006.

    Google Scholar 

  75. G. Noh and S. H. ans Klaus-Jürgen Bathe, Performance of an implicit time integration scheme in the analysis of wave propagations, Computers and Structures, 123 (2013), pp. 93–105.

    Article  Google Scholar 

  76. C. C. Ober, T. M. Smith, J. R. Overfelt, S. S. Collis, G. J. von Winckel, B. G. van Bloemen Waanders, N. J. Downey, S. A. Mitchell, S. D. Bond, D. F. Aldridge, and J. R. Krebs, Visco-TTI-elastic FWI using discontinuous Galerkin, in SEG Technical Program Expanded Abstracts, Dallas, 2016, Society of Exploration Geophysics, p. 5654.

    Google Scholar 

  77. S. Operto, Y. Gholami, V. Prieux, A. Ribodetti, R. Brossier, L. Metivier, and J. Virieux, A guided tour of multiparameter full waveform inversion with multicomponent data: from theory to practice, The Leading Edge, 32 (2013), p. 936.

    Article  Google Scholar 

  78. S. Operto, J. Virieux, P. Amestoy, J.-Y. L’Excellent, L. Giraud, and H. Ben Hadj Ali, 3D finite-difference frequency-domain modeling of visco-acoustic wave propagation using a massively parallel direct solver: A feasibility study, Geophysics, 72 (2007), p. SM195.

    Article  Google Scholar 

  79. W. J. Parnell and I. D. Abrahams, New integral equation approach to elastodynamic homogenization, Proceedings of the Royal Society A, 464 (2008), p. 1461.

    Article  MathSciNet  Google Scholar 

  80. R.-É. Plessix and Q. Cao, A parametrization study for surface seismic full waveform inversion in an acoustic vertical transversely isotropic medium, Geophys J Int, 185 (2011), p. 539.

    Article  Google Scholar 

  81. R. G. Pratt, C. Shin, and G. J. Hicks, Gauss-newton and full newton methods in frequency-space seismic waveform inversion, Geophys. J. Int, 133 (1998), p. 341.

    Article  Google Scholar 

  82. R. G. Pratt and M. H. Worthington, Inverse theory applied to multi-source cross-hole tomography. Part I: acoustic wave-equation method, Geophys. Prospect., 38 (1990), p. 287.

    Google Scholar 

  83. W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes 3rd Edition: The Art of Scientific Computing, Cambridge University Press, New York, third ed., 2007.

    MATH  Google Scholar 

  84. L. Qiu and M.-D. Lacasse, Effects of parameterization on non-linear parameter estimation problems, to be submitted.

    Google Scholar 

  85. C. D. Riyanti, Y. A. Erlangga, R.-É. Plessix, W. A. Mulder, C. Vuik, and C. Oosterlee, New iterative solver for the time-harmonic wave equation, Geophysics, 71 (2006), p. E57.

    Article  Google Scholar 

  86. J. O. A. Robertsson, J. O. Blanch, and W. W. Symes, Viscoelastic finite-difference modeling, Geophysics, 59 (1994), p. 1444.

    Article  Google Scholar 

  87. P. S. Routh, J. R. Krebs, S. Lazaratos, and J. E. Anderson, Encoded simultaneous-source full-wavefield inversion for spectrally shaped marine streamer data, in SEG Technical Program Expanded Abstracts, San Antonio, 2011, Society of Exploration Geophysics, p. 2433.

    Google Scholar 

  88. R. Sargent, Progress in modelling and simulation, in Verification and Validation of Simulation Models, F. Celier, ed., Academic Press, London, 1982, p. 159.

    Google Scholar 

  89. S. Scheslinger, R. E. Crosby, R. E. Gagné, G. S. Innis, C. S. Lalwani, J. Loch, R. J. Sylvester, R. D. Wright, N. Kheir, and D. Bartos, Terminology for model credibility, Simulation, (1979), pp. 103–104.

    Google Scholar 

  90. J. H. Schön, Physical properties of rocks — Fundamentals and principles of petrophysics, in Handbook of Geophysical Exploration, K. Helbig and S. Treitel, eds., vol. 18, Elsevier, 2004, p. 583.

    Google Scholar 

  91. P. M. Shearer, Introduction to Seismology, Cambridge University Press, Cambridge, 1999.

    Google Scholar 

  92. SIAM Working Group on CSE Education, Graduate education in computational science and engineering, SIAM Review, 43 (2001), p. 163.

    Article  Google Scholar 

  93. I. S. Sokolnikov, Mathematical Theory of Elasticity, McGraw-Hill, New York, 1956.

    Google Scholar 

  94. W. W. Symes, I. S. Terentyev, and T. W. Vdovina, Gridding requirements for accurate finite difference simulation, in SEG Technical Program Expanded Abstracts, Las Vegas, 2008, Society of Exploration Geophysics, pp. 2077–2081.

    Google Scholar 

  95. A. Tarantola, Inversion of seismic reflection data in the acoustic approximation, Geophysics, 49 (1984), p. 1259.

    Article  Google Scholar 

  96. A. Tarantola, Inverse Problem Theory And Methods For Model Parameter Estimation, Society of Applied and Industrial Mathematics, Philadelphia, 2005.

    Book  Google Scholar 

  97. L. Thomsen, Weak elastic anisotropy, Geophysics, 51 (1986), p. 1954.

    Article  Google Scholar 

  98. V. A. Titarev and E. F. Toro, ADER: Arbitrary high-order Godunov approach, J. Sci. Comput., 17 (2002), pp. 609–18.

    Article  MathSciNet  Google Scholar 

  99. M. N. Toksoz, D. H. Johnston, and A. Timur, Attenuation of seismic waves in dry and saturated rocks: I. Laboratory measurements, Geophysics, 44 (1979), p. 681.

    Article  Google Scholar 

  100. S. Torquato, Random Heterogeneous Materials: Microstructure and Macroscopic Properties, vol. 16 of Interdisciplinary applied mathematics, Springer-Verlag, New York, 2002.

    Google Scholar 

  101. J. Tromp, D. Komatitsch, and Q. Liu, Spectral elements and adjoint methods in seismology, Communications in Computational Physics, 3 (2008), p. 1.

    MATH  Google Scholar 

  102. B. Ursin and T. Toverud, Comparison of seismic dispersion and attenuation models, Stud. Geophys. Geod., 46 (2002), p. 293.

    Article  Google Scholar 

  103. J. Virieux, P-SV wave propagation in heterogeneous media: Velocity-stress finite-difference method, Geophysics, 51 (1986), p. 889.

    Article  Google Scholar 

  104. J. Virieux and S. Operto, An overview of full-waveform inversion in exploration geophysics, Geophysics, 74 (2009), p. WCC127.

    Article  Google Scholar 

  105. J. Virieux, S. Operto, H. Ben Hadj Ali, R. Brossier, V. Etienne, F. S. amd L. Giraud, and A. Haidar, Seismic wave modeling for seismic imaging, The Leading Edge, 28 (2009), p. 538.

    Google Scholar 

  106. C. Vogel, Computational methods for inverse problems, Society for Industrial and Applied Mathematics, Philadelphia, 2002.

    Book  Google Scholar 

  107. S. Wang, M. V. de Hoop, and J. Xia, On 3D modeling of seismic wave propagation via a structured parallel multifrontal direct Helmholtz solver, Geophysical Prospecting, 59 (2011), p. 857.

    Article  Google Scholar 

  108. Y. Wang, Seismic Inverse Q Filtering, John Wiley and Sons, New York, 2009.

    Google Scholar 

  109. M. Warner and L. Guasch, Adaptive waveform inversion: Theory, Geophysics, 81 (2016), pp. R429–R445.

    Article  Google Scholar 

  110. R. Wu and K. Aki, Scattering characteristics of elastic waves by an elastic heterogeneity, Geophysics, 50 (1985), p. 582.

    Article  Google Scholar 

  111. P. Yang, R. Brossier, L. Métivier, and J. Virieux, Wavefield reconstruction in attenuating media: A checkpointing-assisted reverse-forward simulation method, Geophysics, 81 (2016), pp. R349–R362.

    Article  Google Scholar 

  112. Y. O. Yuan, F. J. Simons, and J. Tromp, Double-difference adjoint seismic tomography, Geophys. J. Int., 206 (2017), pp. 1599–1618.

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank ExxonMobil Research and Engineering Company for permission to publish this work. The authors would also like to thank Fadil Santosa and the Institute of Mathematics and its Applications for hosting the workshop where this work was presented. We would also like to thank Jeremy Brandman, Jerry Krebs, Anatoly Baumstein, and Dimitar Trenev for their insightful suggestions and comments on the original manuscript.

Appendix

We start the mathematical description of attenuation by considering a rheological model composed of springs and dashpots as shown in Figure 2. The effective modulus c(ω) of this mechanical model can be expressed as a function of auxiliary variables representing relaxation angular frequencies ωl = 2πfl and nondimensional anelastic coefficients al,

$$\displaystyle \begin{aligned} c(\omega) = c_u \left(1 - \sum_{l=1}^{n} \frac{a_l\omega_l}{\omega_l + \mathrm{i}\omega} \right),\end{aligned} $$
(49)

where ωl = Δclηl, al = Δclcu where the unrelaxed modulus \(c_u = c(\omega \rightarrow \infty ) = c_r + \sum _{l=1}^{n} \varDelta c_l\), in contrast to the relaxed modulus cr = c(ω → 0). This only says that if one moves the system in Figure 2 very slowly, only spring cr is felt as dashpots are relaxing and not transmitting force, while if one moves it very quickly all springs are fully active. Anything in between depends on the frequency according to Equation (49). This model will have an attenuation quality factor following the ratio of real and imaginary parts of the modulus [54, 71], leading to the following self-consistent relation

$$\displaystyle \begin{aligned} Q^{-1}(\omega) = \frac{\Im\left[c(\omega)\right]} {\Re\left[c(\omega)\right]} = \sum_{l=1}^{n} a_l \frac{\omega_l \omega + \omega_l^2 Q^{-1}(\omega)} {\omega_l^2 + \omega^2}.\end{aligned} $$
(50)

The frequency dependence of Q(ω) is set by carefully picking values for ωl and al. This task is usually achieved by sampling frequencies ωl logarithmically in the band of interest and fitting the anelastic coefficients al using a least-squares method [28, 37, 86]. In order to obtain a constant-Q attenuation, i.e., Q(ω) = Qo, we have shown [25] that at least three such relaxation mechanisms are required to obtain a response close to the desired behavior. Figure 9 shows the effect of using a different number of relaxation mechanisms on the frequency response Q(f) of a generalized Maxwell solid. The parameters of the relaxation mechanisms are optimally tuned over a frequency band ranging from 3 Hz to 40 Hz in view of obtaining a constant target quality factor of Qo = 50.

Fig. 9
figure 9figure 9

Frequency response of quality factor Q(f) for generalized Maxwell solids with 1, 2, 3, and 5 relaxation mechanisms over a frequency band ranging from 3 Hz to 40 Hz. The parameters of the relaxation mechanisms are optimized (least-squares) to mimic a constant target quality factor Q = 50 in the frequency band

Each spring and dashpot added to the relaxation model introduce an additional anelastic function ζl(t) (sometimes called memory variable) that has to be solved as part of the governing equations. Each equation in (1) is then replaced by

$$\displaystyle \begin{aligned} \tau(e, t) = c_u e(t) - \sum_{l=1}^{n} a_l\zeta_l(t),\end{aligned} $$
(51)

which are coupled to n additional equations for the anelastic functions,

$$\displaystyle \begin{aligned} \frac{d\zeta_l(t)}{dt} + \omega_l\zeta_l(t) = \omega_l e(t). \end{aligned} $$
(52)

These equations are obtained after integrating the frequency-dependent moduli while maintaining causality (Boltzmann superposition principle). See [71] for details.

Because of this additional complexity, viscoelastic simulations are more costly by up to an order of magnitude, which can be reduced if special algorithms are used [26].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin-D. Lacasse .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this chapter

Cite this chapter

Lacasse, MD., White, L., Denli, H., Qiu, L. (2018). Full-Wavefield Inversion: An Extreme-Scale PDE-Constrained Optimization Problem. In: Antil, H., Kouri, D.P., Lacasse, MD., Ridzal, D. (eds) Frontiers in PDE-Constrained Optimization. The IMA Volumes in Mathematics and its Applications, vol 163. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-8636-1_6

Download citation

Publish with us

Policies and ethics