Skip to main content

Inexact Trust-Region Methods for PDE-Constrained Optimization

  • Chapter
Frontiers in PDE-Constrained Optimization

Part of the book series: The IMA Volumes in Mathematics and its Applications ((IMA,volume 163))

Abstract

Numerical solution of optimization problems with partial differential equation (PDE) constraints typically requires inexact objective function and constraint evaluations, derivative approximations, and the use of iterative linear system solvers. Over the last 30 years, trust-region methods have been extended to rigorously, robustly, and efficiently handle various sources of inexactness in the optimization process. In this chapter, we review some of the recent advances, discuss their key algorithmic contributions, and present numerical examples that demonstrate how inexact computations can be exploited to enable the solution of large-scale PDE-constrained optimization problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Clearly, with exact linear system solves we have \(W_k^* W_k g_k = W_k W_k g_k = W_k g_k\), however, in the presence of inexactness the distinction is important.

  2. 2.

    For all details, see the proofs in [20, p. 1536–1538] and [21, p. 295–298].

  3. 3.

    Only the scope of the index k extends from Algorithm 4 to Algorithm 3 – indices i and j are independent, i.e., their scope is local to each algorithm.

  4. 4.

    Under the assumptions of this chapter, augmented systems can always be related to strictly convex quadratic problems of the form \(\min \frac {1}{2} \left \langle s^1,s^1\right \rangle _{X} - \left \langle b^1, s^1\right \rangle _{X} \mbox{ subject to } c_x(x_k)s^1 = b_2\), where (b1b2)T is the right-hand side vector of the augmented system and s1 is the first block of the left-hand side vector.

References

  1. N. Alexandrov. Robustness properties of a trust-region framework for managing approximation models in engineering optimization. In Proceedings from the AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization, Work-in-progress Paper AIAA–96–4102-CP, pages 1056–1059, 1996.

    Google Scholar 

  2. N. Alexandrov. A trust–region framework for managing approximations in constrained optimization problems. In Proceedings of the First ISSMO/NASA Internet Conference on Approximation and Fast Reanalysis Techniques in Engineering Optimization, June 14–27, 1998, 1998.

    Google Scholar 

  3. N. Alexandrov and J. E. Dennis. Multilevel algorithms for nonlinear optimization. In J. Borggaard, J. Burkardt, M. D. Gunzburger, and J. Peterson, editors, Optimal Design and Control, pages 1–22, Basel, Boston, Berlin, 1995. Birkhäuser Verlag.

    Google Scholar 

  4. N. Alexandrov, J. E. Dennis Jr., R. M. Lewis, and V. Torczon. A trust region framework for managing the use of approximation models in optimization. Structural Optimization, 15: 16–23, 1998. Appeared also as ICASE report 97–50.

    Article  Google Scholar 

  5. E. Arian, M. Fahl, and E. W. Sachs. Trust–region proper orthogonal decomposition for flow control. Technical Report 2000–25, ICASE, NASA Langley Research Center, Hampton VA 23681–2299, 2000.

    Google Scholar 

  6. I. Babuška, F. Nobile, and R. Tempone. A stochastic collocation method for elliptic partial differential equations with random input data. SIAM Rev., 52(2):317–355, 2010.

    Article  MathSciNet  MATH  Google Scholar 

  7. V. Barthelmann, E. Novak, and K. Ritter. High dimensional polynomial interpolation on sparse grids. Adv. Comput. Math., 12(4):273–288, 2000. Multivariate polynomial interpolation.

    Google Scholar 

  8. F. Bastin, C. Cirillo, and Ph. L. Toint. An adaptive Monte Carlo algorithm for computing mixed logit estimators. Comput. Manag. Sci., 3(1):55–79, 2006.

    Article  MathSciNet  MATH  Google Scholar 

  9. M. Benzi, G. H Golub, and J. Liesen. Numerical solution of saddle point problems. Acta Numerica, 14(1):1–137, 2005.

    Article  MathSciNet  MATH  Google Scholar 

  10. R. G. Carter. Numerical optimization in Hilbert space using inexact function and gradient evaluations. Technical Report 89–45, ICASE, Langley, VA, 1989.

    Google Scholar 

  11. R. G. Carter. On the global convergence of trust region algorithms using inexact gradient information. SIAM J. Numer. Anal., 28:251–265, 1991.

    Article  MathSciNet  MATH  Google Scholar 

  12. R. G. Carter. Numerical experience with a class of algorithms for nonlinear optimization using inexact function and gradient information. SIAM Journal on Scientific Computing, 14(2):368–388, 1993.

    Article  MathSciNet  MATH  Google Scholar 

  13. A. R. Conn, N. I. M. Gould, and Ph. L. Toint. Trust–Region Methods. SIAM, Philadelphia, 2000.

    Book  MATH  Google Scholar 

  14. J. E. Dennis, M. El-Alem, and M. C. Maciel. A Global Convergence Theory for General Trust–Region–Based Algorithms for Equality Constrained Optimization. SIAM J. Optimization, 7:177–207, 1997.

    Article  MathSciNet  MATH  Google Scholar 

  15. J. E. Dennis and V. Torczon. Approximation model managemet for optimization. In Proceedings from the AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization, Work-in-progress Paper AIAA–96–4099-CP, pages 1044–1046, 1996.

    Google Scholar 

  16. J. E. Dennis and V. Torczon. Managing approximation models in optimization. In N. Alexandrov and M. Y. Hussaini, editors, Multidisciplinary Design Optimization. State of the Art, pages 330–347, Philadelphia, 1997. SIAM.

    Google Scholar 

  17. J. E. Dennis, Jr. and R. B. Schnabel. Numerical Methods for Nonlinear Equations and Unconstrained Optimization. SIAM, Philadelphia, 1996.

    Book  MATH  Google Scholar 

  18. M. Fahl and E.W. Sachs. Reduced order modelling approaches to PDE–constrained optimization based on proper orthogonal decompostion. In L. T. Biegler, O. Ghattas, M. Heinkenschloss, and B. van Bloemen Waanders van Bloemen Waanders, editors, Large-Scale PDE-Constrained Optimization, Lecture Notes in Computational Science and Engineering, Vol. 30, Heidelberg, 2003. Springer-Verlag.

    Google Scholar 

  19. T. Gerstner and M. Griebel. Dimension-adaptive tensor-product quadrature. Computing, 71(1):65–87, 2003.

    Article  MathSciNet  MATH  Google Scholar 

  20. M. Heinkenschloss and D. Ridzal. A matrix-free trust-region SQP method for equality constrained optimization. SIAM Journal on Optimization, 24(3):1507–1541, 2014.

    Article  MathSciNet  MATH  Google Scholar 

  21. M. Heinkenschloss and L. N. Vicente. Analysis of inexact trust–region SQP algorithms. SIAM J. Optimization, 12:283–302, 2001.

    Article  MathSciNet  MATH  Google Scholar 

  22. M. Hinze, R. Pinnau, M. Ulbrich, and S. Ulbrich. Optimization with Partial Differential Equations, volume 23 of Mathematical Modelling, Theory and Applications. Springer Verlag, Heidelberg, New York, Berlin, 2009.

    MATH  Google Scholar 

  23. K. Ito and S. S. Ravindran. Optimal control of thermally convected fluid flows. SIAM J. on Scientific Computing, 19:1847–1869, 1998.

    Article  MathSciNet  MATH  Google Scholar 

  24. C.T. Kelley and E.W. Sachs. Truncated newton methods for optimization with inaccurate functions and gradients. Journal of Optimization Theory and Applications, 116(1):83–98, 2003.

    Article  MathSciNet  MATH  Google Scholar 

  25. D. P. Kouri, M. Heinkenschloss, D. Ridzal, and B. G. van Bloemen Waanders. A trust-region algorithm with adaptive stochastic collocation for PDE optimization under uncertainty. SIAM Journal on Scientific Computing, 35(4):A1847–A1879, 2013.

    Article  MathSciNet  MATH  Google Scholar 

  26. D. P. Kouri, M. Heinkenschloss, D. Ridzal, and B. G. van Bloemen Waanders. Inexact objective function evaluations in a trust-region algorithm for PDE-constrained optimization under uncertainty. SIAM Journal on Scientific Computing, 36(6):A3011–A3029, 2014.

    Article  MathSciNet  MATH  Google Scholar 

  27. D. P. Kouri, G. von Winckel, and D. Ridzal. ROL: Rapid Optimization Library. https://trilinos.org/packages/rol, 2017.

  28. L. Lubkoll, A. Schiela, and M. Weiser. An affine covariant composite step method for optimization with PDEs as equality constraints. Optimization Methods and Software, 32(5):1132–1161, 2017.

    Article  MathSciNet  MATH  Google Scholar 

  29. J. J. Moré. Recent developments in algorithms and software for trust region methods. In A. Bachem, M. Grötschel, and B. Korte, editors, Mathematical Programming, The State of The Art, pages 258–287. Springer Verlag, Berlin, Heidelberg, New-York, 1983.

    Google Scholar 

  30. M. F. Murphy, G. H. Golub, and A. J. Wathen. A note on preconditioning for indefinite linear systems. SIAM Journal on Scientific Computing, 21(6):1969–1972, 2000.

    Article  MathSciNet  MATH  Google Scholar 

  31. E. Novak and K. Ritter. High-dimensional integration of smooth functions over cubes. Numer. Math., 75(1):79–97, 1996.

    Article  MathSciNet  MATH  Google Scholar 

  32. E. O. Omojokun. Trust region algorithms for optimization with nonlinear equality and inequality constraints. PhD thesis, Department of Computer Science, University of Colorado, Boulder, Colorado, 1989.

    Google Scholar 

  33. T. Rees, H. S. Dollar, and A. J. Wathen. Optimal Solvers for PDE-Constrained Optimization. SIAM Journal on Scientific Computing, 32(1):271–298, 2010.

    Article  MathSciNet  MATH  Google Scholar 

  34. T. Rees, M. Stoll, and A. Wathen. All-at-once preconditioning in PDE-constrained optimization. Kybernetika, 46(2):341–360, 2010.

    MathSciNet  MATH  Google Scholar 

  35. T. Rees and A. J. Wathen. Preconditioning iterative methods for the optimal control of the Stokes equation. SIAM J. Sci. Comput, 33(5), 2010.

    Article  MathSciNet  MATH  Google Scholar 

  36. D. Ridzal. Preconditioning of a Full-Space Trust-Region SQP Algorithm for PDE-constrained Optimization. In Report No. 04/2013: Numerical Methods for PDE Constrained Optimization with Uncertain Data. Mathematisches Forschungsinstitut Oberwolfach, 2013.

    Google Scholar 

  37. S. A. Smoljak. Quadrature and interpolation formulae on tensor products of certain function classes. Soviet Math. Dokl., 4:240–243, 1963.

    Google Scholar 

  38. M. Stoll. One-shot solution of a time-dependent time-periodic PDE-constrained optimization problem. IMA Journal of Numerical Analysis, 34(4):1554–1577, 2014.

    Article  MathSciNet  MATH  Google Scholar 

  39. M. Stoll and A. Wathen. All-at-once solution of time-dependent Stokes control. Journal of Computational Physics, 232(1):498–515, 2013.

    Article  MathSciNet  Google Scholar 

  40. Ph. L. Toint. Global convergence of a class of trust-region methods for nonconvex minimization in Hilbert space. IMA Journal of Numerical Analysis, 8:231–252, 1988.

    Article  MathSciNet  MATH  Google Scholar 

  41. S. Ulbrich and J. C. Ziems. Adaptive multilevel trust-region methods for time-dependent PDE-constrained optimization. Portugaliae Mathematica, 74(1):37–67, 2017.

    Article  MathSciNet  MATH  Google Scholar 

  42. D. Xiu and J. S. Hesthaven. High-order collocation methods for differential equations with random inputs. SIAM J. Sci. Comput., 27(3):1118–1139 (electronic), 2005.

    Article  MathSciNet  MATH  Google Scholar 

  43. J. C. Ziems and S. Ulbrich. Adaptive multilevel inexact SQP methods for PDE-constrained optimization. SIAM Journal on Optimization, 21(1):1–40, 2011.

    Article  MathSciNet  MATH  Google Scholar 

  44. J. Carsten Ziems. Adaptive Multilevel Inexact SQP-Methods for PDE-Constrained Optimization with Control Constraints. SIAM Journal on Optimization, 23(2):1257–1283, 2013.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by DARPA EQUiPS grant SNL 014150709 and the DOE NNSA ASC ATDM program.

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia LLC, a wholly owned subsidiary of Honeywell International Inc. for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525. This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed in the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Denis Ridzal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 National Technology & Engineering Solutions of Sandia, LLC. Under the terms of Contract DE-NA0003525, there is a non-exclusive license for use of this work by or on behalf of the U.S. Government

About this chapter

Cite this chapter

Kouri, D.P., Ridzal, D. (2018). Inexact Trust-Region Methods for PDE-Constrained Optimization. In: Antil, H., Kouri, D.P., Lacasse, MD., Ridzal, D. (eds) Frontiers in PDE-Constrained Optimization. The IMA Volumes in Mathematics and its Applications, vol 163. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-8636-1_3

Download citation

Publish with us

Policies and ethics