Skip to main content

Overview of Pathophysiology of Acute Kidney Injury: Human Evidence, Mechanisms, Pathological Correlations and Biomarkers and Animal Models

  • Chapter
  • First Online:

Abstract

Mortality and morbidity associated with acute kidney injury (AKI) are high. Depending on the definition used, AKI has been estimated to occur in 3–30% of hospitalised patients and up to 60% of critically ill patients, with severe AKI that requires dialysis complicating the care of more than 5% of patients in intensive care. It is an increasingly important global clinical problem with adverse effects on patient prognosis and healthcare costs. The causes of AKI range from, but are not limited to, septic shock, major surgery, cardiogenic shock, hypovolaemia, nephrotoxic drugs, liver disease (hepato-renal syndrome) and obstruction. This review will examine the pathophysiology of AKI, including the human evidence, mechanisms, pathological correlations and animal models. Mechanisms that might contribute to failure to recovery are highlighted, along with clinico-pathological correlations that allow development or use of novel biomarkers that diagnose AKI early or herald non-recovery.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

AKI:

   Acute kidney injury

ATI:

    Acute tubular injury

ATN:

    Acute tubular necrosis

Bax:

    B-cell lymphoma 2/Bcl-2-associated X protein

CKD:

   Chronic kidney disease

CXCl16:

 Chemokine ligand 16

EDHF:

   Endothelium-derived hyperpolarising factor

ER:

   Endoplasmic reticulum

ESKD:

   End-stage kidney disease

FENa:

  Fractional excretion of sodium

GFR:

  Glomerular filtration rate

GST:

   Glutathione S-transferase

HR:

   Hazard ratio

ICAM-1:

 Intercellular adhesion molecule-1

ICU:

      Intensive care unit

IGFBP7:

 Insulin-like growth factor-binding protein 7

IL:

    Interleukin

im:

    Intramuscular

ip:

    Intraperitoneal

iv:

       Intravenous

KIM-1:

  Kidney injury molecule-1

L-FABP:

 Liver-associated fatty acid-binding protein

LPS:

    Lipopolysaccharide

MCP-1:

  Monocyte chemotactic protein-1

MIF:

  Migration inhibitory factor

MPT:

  Mitochondria permeability transition

NGAL:

  Neutrophil gelatinase-associated lipocalin

NO:

   Nitric oxide

NOS:

   Nitric oxide synthase

PIDD:

      p53-induced protein with death domain

PUMA-α[alpha]:

  p53 upregulated modulator of apoptosis-α[alpha]

ROS:

         Reactive oxygen species

SCr:

         Serum creatinine

TBARS:

      Thiobarbituric acid-reacting substances

TGF:

       Transforming growth factor

TIMP-2:

     Tissue inhibitor of metalloproteinases-2

TNF-α[alpha]:

   Tumour necrosis factor-α[alpha]

VEGF:

      Vascular endothelial growth factor

References

  1. Lameire N, Bagga A, Cruz D, De Maeseneer J, Endre Z, Kellum J, et al. Acute kidney injury: an increasing global concern. Lancet. 2013;382:170–9.

    Article  PubMed  Google Scholar 

  2. Palevsky P. Renal support in acute kidney injury—how much is enough? N Engl J Med. 2009;361:1699–701.

    Article  CAS  PubMed  Google Scholar 

  3. Uchino S, Bellomo R, Goldsmith D, Bates S, Ronco C. An assessment of the RIFLE criteria for acute renal failure in hospitalized patients. Crit Care Med. 2006;34(7):1913.

    Article  PubMed  Google Scholar 

  4. Wonnacott A, Meran S, Amphlett B, Talabani B, Phillips A. Epidemiology and outcomes in community-acquired versus hospital-acquired AKI. Clin J Am Soc Nephrol. 2014;9:1007–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Bagshaw S, Laupland K, Doig C, Mortis G, Fick G, Mucenski M, et al. Prognosis for long-term survival and renal recovery in critically ill patients with severe acute renal failure: a population based study. Crit Care. 2005;9:R700–R9.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Hoste E, Schurgers M. Epidemiology of acute kidney injury: how big is the problem? Crit Care Med. 2008;36:S146–S51.

    Article  PubMed  Google Scholar 

  7. Lo L, Go A, Chertow G, McCulloch C, Fan D, Ordoñez J, et al. Dialysis-requiring acute renal failure increases the risk of progressive chronic kidney disease. Kidney Int. 2009;76:893–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Uchino S, Kellum J, Bellomo R, Doig G, Morimatsu H, Morgera S, et al. Acute renal failure in critically ill patients. J Am Med Assoc. 2005;294:813–8.

    Article  CAS  Google Scholar 

  9. Susantitaphong P, Cruz D, Cerda J, Abulfaraj M, Alqahtani F, Koulouridis I, et al. World incidence of AKI: a meta-analysis. Clin J Am Soc Nephrol. 2013;8:1482–93.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Mehta R, Cerdá J, Burdmann E, Tonelli M, García-García G, Jha V, et al. International Society of Nephrology’s 0by25 initiative for acute kidney injury (zero preventable deaths by 2025): a human rights case for nephrology. Lancet. 2015;385:2616–43.

    Article  PubMed  Google Scholar 

  11. Investigators TP. A randomized trial of protocol-based care for early septic shock. N Engl J Med. 2014;370:1683–93.

    Article  CAS  Google Scholar 

  12. VA/NIH Acute Renal Failure Trial Network, Palevsky P, Zhang J, O’Connor T, Chertow G, Crowley S, et al. Intensity of renal support in critically ill patients with acute kidney injury. N Engl J Med. 2008;359:7–20.

    Article  Google Scholar 

  13. Coca S, Yusuf B, Shlipak M, Garg A, Parikh C. Long-term risk of mortality and other adverse outcomes after acute kidney injury: a systematic review and meta-analysis. Am J Kidney Dis. 2009;53:961–73.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Mammen C, Al Abbas A, Skippen P, Nadel H, Levine D, Collet J-P, et al. Long-term risk of CKD in children surviving episodes of acute kidney injury in the intensive care unit: a prospective cohort study. Am J Kidney Dis. 2012;59:523–30.

    Article  PubMed  Google Scholar 

  15. Pannu N, James M, Hemmelgarn B, Klarenbach S, Network AKD. Association between AKI, recovery of renal function, and long-term outcomes after hospital discharge. Clin J Am Soc Nephrol. 2013;8(2):194–202. https://doi.org/10.2215/CJN.06480612.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Doi K, Katagiri D, Negishi K, Hasegawa S, Hamasaki Y, Fujita T, et al. Mild elevation of urinary biomarkers in prerenal acute kidney injury. Kidney Int. 2012;82:1114–20.

    Article  CAS  PubMed  Google Scholar 

  17. Nejat M, Pickering J, Devarajan P, Bonventre J, Edelstein C, Walker R, et al. Some biomarkers of acute kidney injury are increased in pre-renal acute injury. Kidney Int. 2012;81:1254–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Koyner J, Garg A, Thiessen-Philbrook H, Coca S, Cantley L, Peixoto A, et al. Adjudication of etiology of acute kidney injury: experience from the TRIBE-AKI multi-center study. BMC Nephrol. 2014;15:1–9.

    Article  Google Scholar 

  19. Endre Z, Kellum J, Di Somma S, Doi K, Goldstein S, Koyner J, et al. Differential diagnosis of AKI in clinical practice by functional and damage biomarkers: workgroup statements from the tenth Acute Dialysis Quality Initiative Consensus Conference. Contrib Nephrol. 2013;182:30–44.

    Article  PubMed  Google Scholar 

  20. Hamdi A, Hajage D, Van Glabeke E, Belenfant X, Vincent F, Gonzalez F, et al. Severe post-renal acute kidney injury, post-obstructive diuresis and renal recovery. BJU Int. 2012;110:E1027–E34.

    Article  CAS  PubMed  Google Scholar 

  21. Murray P, Mehta R, Shaw A, Ronco C, Endre Z, Kellum J, et al. Potential use of bioma5rkers in acute kidney injury: report and summary of recommendations from the 10th Acute Dialysis Quality Initiative consensus conference. Kidney Int. 2014;85:513–21.

    Article  PubMed  Google Scholar 

  22. Sabbisetti V, Waikarm S, Antoine D, Smiles A, Wang C, Ravisankar A, et al. Blood kidney injury molecule-1 is a biomarker of acute and chronic kidney injury and predicts progression to ESRD in type I diabetes. J Am Soc Nephrol. 2014;25:2177–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. KDIGO, Kidney Disease Improving Global Outcomes Acute Kidney Injury Work Group. KDIGO clinical practice guideline for acute kidney injury. Kidney Int Suppl. 2012;2:1–143.

    Article  Google Scholar 

  24. Praga M, González E. Acute interstitial nephritis. Kidney Int. 2010;77:956–61.

    Article  PubMed  Google Scholar 

  25. George J, Nester C. Syndromes of thrombotic microangiopathy. N Engl J Med. 2014;371:654–66.

    Article  CAS  PubMed  Google Scholar 

  26. Liangos O, Wald R, O’Bell J, Price L, Pereira B, Jaber B. Epidemiology and outcomes of acute renal failure in hospitalized patients: a national survey. Clin J Am Soc Nephrol. 2006;1:43–51.

    Article  PubMed  Google Scholar 

  27. Quintana L, Peréz N, De Sousa E, Rodas L, Griffiths M, Solé M, et al. ANCA serotype and histopathological classification for the prediction of renal outcome in ANCA-associated glomerulonephritis. Nephrol Dial Transplant. 2014;29:1764–9.

    Article  CAS  PubMed  Google Scholar 

  28. Ruggenenti P, Noris M, Remuzzi G. Thrombotic microangiopathy, hemolytic uremic syndrome, and thrombotic thrombocytopenic purpura. Kidney Int. 2001;60:831–46.

    Article  CAS  PubMed  Google Scholar 

  29. Porile J, Bakris G, Garella S. Acute interstitial nephritis with glomerulopathy due to nonsteroidal anti-inflammatory agents: a review of its clinical spectrum and effects of steroid therapy. J Clin Pharmacol. 1990;30:468–75.

    Article  CAS  PubMed  Google Scholar 

  30. Levey A, Stevens L, Schmid C, Zhang Y, Castro A, Feldman H, et al. A new equation to estimate glomerular filtration rate. Ann Intern Med. 2009;150:604–12.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Chertow G, Burdick E, Honour M, Bonventre J, Bates D. Acute kidney injury, mortality, length of stay, and costs in hospitalized patients. J Am Soc Nephrol. 2005;16:3365–70.

    Article  PubMed  Google Scholar 

  32. KDIGO. KDIGO clinical practice guideline for acute kidney injury. Kidney Int Suppl. 2012;2:1–141.

    Article  Google Scholar 

  33. Mehta R, Kellum J, Shah S, Molitoris B, Ronco C, Warnock D, et al. Acute Kidney Injury Network: report of an initiative to improve outcomes in acute kidney injury. Crit Care. 2007;11:1–8.

    Google Scholar 

  34. Pickering J, Endre Z. GFR shot by RIFLE: errors in staging acute kidney injury. Lancet. 2009;373:1318–9.

    Article  PubMed  Google Scholar 

  35. Selvin E, Juraschek S, Eckfeldt J, Levey A, Inker L, Coresh J. Within-person variability in kidney measures. Am J Kidney Dis. 2013;61:716–22.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Md Ralib A, Pickering J, Shaw G, Endre Z. The urine output definition of acute kidney injury is too liberal. Crit Care. 2013;17:1–11.

    Article  Google Scholar 

  37. Pianta T, Buckley N, Peake P, Endre Z. Clinical use of biomarkers for toxicant-induced acute kidney injury. Biomark Med. 2013;7:441–56.

    Article  CAS  PubMed  Google Scholar 

  38. Perkins R, Kirchner H, Hartle J, Bucaloiu I. Estimated glomerular filtration rate variability and risk of end-stage renal disease among patients with Stage 3 chronic kidney disease. Clin Nephrol. 2013;80:256–62.

    Article  CAS  PubMed  Google Scholar 

  39. Drion I, Cobbaert C, Groenier K, Weykamp C, Bilo H, Wetzels J, et al. Clinical evaluation of analytical variations in serum creatinine measurements: why laboratories should abandon Jaffe techniques. BMC Nephrol. 2012;13:1–8.

    Article  CAS  Google Scholar 

  40. Joffe M, Hsu C, Feldman H, Weir M, Landis J, Hamm L, et al. Variability of creatinine measurements in clinical laboratories: results from the CRIC study. Am J Nephrol. 2010;31:426–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Pickering J, Endre Z. Back-calculating baseline creatinine with MDRD misclassifies acute kidney injury in the intensive care unit. Clin J Am Soc Nephrol. 2010;5:1165–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Rivers E, Nguyen B, Havstad S, Ressler J, Muzzin A, Knoblich B, et al. Early goal-directed therapy in the treatment of severe sepsis and septic shock. N Engl J Med. 2001;345:1368–77.

    Article  CAS  PubMed  Google Scholar 

  43. Meersch M, Schmidt C, Hoffmeier A, Van Aken H, Wempe C, Gerss J, Zarbock A. Prevention of cardiac surgery-associated AKI by implementing the KDIGO guidelines in high risk patients identified by biomarkers: the PrevAKI randomized controlled trial. Intensive Care Med. 2017;43(11):1551–61. https://doi.org/10.1007/s00134-016-4670-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Friedrich J, Adhikari N, Herridge M, Beyene J. Meta-analysis: low-dose dopamine increases urine output but does not prevent renal dysfunction or death. Ann Intern Med. 2005;142:510–24.

    Article  CAS  PubMed  Google Scholar 

  45. Egal M, Erler N, de Geus H, van Bommel J, Groeneveld J. Targeting oliguria reversal in goal-directed hemodynamic management does not reduce renal dysfunction in perioperative and critically ill patients: a systematic review and meta-analysis. Anesth Analg. 2016;122:173–85.

    Article  PubMed  Google Scholar 

  46. Famulski K, de Freitas D, Kreepala C, Chang J, Sellares J, Sis B, et al. Molecular phenotypes of acute kidney injury in kidney transplants. J Am Soc Nephrol. 2012;23:948–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Bonventre J, Yang L. Cellular pathophysiology of ischemic acute kidney injury. J Clin Invest. 2011;121:4210–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Linkermann A, Green D. Necroptosis. N Engl J Med. 2014;370:455–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Sancho-Martínez S, López-Novoa J, López-Hernández F. Pathophysiological role of different tubular epithelial cell death modes in acute kidney injury. Clin Kidney J. 2015;8:548–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Chu R, Li C, Wang S, Zou W, Liu G, Yang L. Assessment of KDIGO definitions in patients with histopathologic evidence of acute renal disease. Clin J Am Soc Nephrol. 2014;9:1175–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Obialo C, Okonofua E, Tayade A, Riley L. Epidemiology of de novo acute renal failure in hospitalized African Americans: comparing community-acquired vs hospital-acquired disease. Arch Intern Med. 2000;160:1309–13.

    Article  CAS  PubMed  Google Scholar 

  52. Schissler M, Zaidi S, Kumar H, Deo D, Brier M, McLeish K. Characteristics and outcomes in community-acquired versus hospital-acquired acute kidney injury. Nephrology (Carlton). 2013;18:183–7.

    Article  Google Scholar 

  53. Wang Y, Cui Z, Fan M. Hospital-acquired and community-acquired acute renal failure in hospitalized Chinese: a ten-year review. Ren Fail. 2007;29:163–8.

    Article  CAS  PubMed  Google Scholar 

  54. Roberts D, Wilks M, Roberts M, Swaminathan R, Mohamed F, Dawson A, et al. Changes in the concentrations of creatinine, cystatin C and NGAL in patients with acute paraquat self-poisoning. Toxicol Lett. 2011;202:69–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Maduwage K, Isbister G, Silva A, Bowatta S, Mendis S, Gawarammana I. Epidemiology and clinical effects of hump-nosed pit viper (Genus: Hypnale) envenoming in Sri Lanka. Toxicon. 2013;61:11–5.

    Article  CAS  PubMed  Google Scholar 

  56. Ishikawa K, Bellomo R, May C. The impact of intrarenal nitric oxide synthase inhibition on renal blood flow and function in mild and severe hyperdynamic sepsis. Crit Care Med. 2011;39:770–6.

    Article  CAS  PubMed  Google Scholar 

  57. Spronk P, Ince C, Gardien M, Mathura K, Oudemans-van Straaten H, Zandstra D. Nitroglycerin in septic shock after intravascular volume resuscitation. Lancet. 2002;360:1395–6.

    Article  PubMed  Google Scholar 

  58. Bellomo R, Kellum J, Ronco C. Acute kidney injury. Lancet. 2012;380:756–66.

    Article  PubMed  Google Scholar 

  59. Kheterpal S, Tremper K, Englesbe M, O’Reilly M, Shanks A, Fetterman D, et al. Predictors of postoperative acute renal failure after noncardiac surgery in patients with previously normal renal function. Anesthesiology. 2007;107:892–902.

    Article  PubMed  Google Scholar 

  60. Kheterpal S, Tremper K, Heung M, Rosenberg A, Englesbe M, Shanks A, et al. Development and validation of an acute kidney injury risk index for patients undergoing general surgery: results from a national data set. Anesthesiology. 2009;110:505–15.

    Article  PubMed  Google Scholar 

  61. Bastin A, Ostermann M, Slack A, Diller G, Finney S, Evans T. Acute kidney injury after cardiac surgery according to risk/injury/failure/loss/end-stage, acute kidney injury network, and kidney disease: improving global outcomes classifications. J Crit Care. 2013;28:389–96.

    Article  PubMed  Google Scholar 

  62. Brown J, Kramer R, Coca S, Parikh C. Duration of acute kidney injury impacts long-term survival following cardiac surgery. Ann Thorac Surg. 2012;90:1–14.

    Google Scholar 

  63. Ginès P, Schrier R. Renal failure in cirrhosis. N Engl J Med. 2009;361:1279–90.

    Article  PubMed  Google Scholar 

  64. Ho J, Reslerova M, Gali B, Nickerson P, Rush D, Sood M, et al. Serum creatinine measurement immediately after cardiac surgery and prediction of acute kidney injury. Am J Kidney Dis. 2012;59:196–201.

    Article  CAS  PubMed  Google Scholar 

  65. Swaminathan M, Hudson C, Phillips-Bute B, Patel U, Mathew J, Newman M, et al. Impact of early renal recovery on survival after cardiac surgery-associated acute kidney injury. Ann Thorac Surg. 2010;89:1098–104.

    Article  PubMed  Google Scholar 

  66. Gallagher S, Jones D, Kapur A, Wragg A, Harwood S, Mathur R, et al. Remote ischemic preconditioning has a neutral effect on the incidence of kidney injury after coronary artery bypass graft surgery. Kidney Int. 2015;87:473–81.

    Article  CAS  PubMed  Google Scholar 

  67. Gonzálezm E, Gutiérrez E, Galeano C, Chevia C, de Sequera P, Bernis C, et al. Early steroid treatment improves the recovery of renal function in patients with drug-induced acute interstitial nephritis. Kidney Int. 2008;73:940–6.

    Article  CAS  Google Scholar 

  68. Legendre C, Licht C, Muus P, Greenbaum L, Babu S, Bedrosian C, et al. Terminal complement inhibitor eculizumab in atypical hemolytic-uremic syndrome. N Engl J Med. 2013;368:2169–81.

    Article  CAS  PubMed  Google Scholar 

  69. Karlberg L, Norlén B, Ojteg G, Wolgast M. Impaired medullary circulation in postischemic acute renal failure. Acta Physiol Scand. 1983;118:11–7.

    Article  CAS  PubMed  Google Scholar 

  70. Mengel M, Sis B, Haas M, Colvin R, Halloran P, Racusen L, et al. Banff 2011 Meeting report: new concepts in antibody-mediated rejection. Am J Transplant. 2012;12:563–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Vaidya V, Ozer J, Dieterle F, Collings F, Ramirez V, Troth S, et al. Kidney injury molecule-1 outperforms traditional biomarkers of kidney injury in preclinical biomarker qualification studies. Nat Biotechnol. 2010;28:478–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Yu Y, Jin H, Holder D, Ozer J, Villarreal S, Shughrue P, et al. Urinary biomarkers trefoil factor 3 and albumin enable early detection of kidney tubular injury. Nat Biotechnol. 2010;28:470–7.

    Article  CAS  PubMed  Google Scholar 

  73. Bellomo R, Bagshaw S, Langenberg C, Ronco C. Pre-renal azotemia: a flawed paradigm in critically ill septic patients? Contrib Nephrol. 2007;156:1–9.

    PubMed  Google Scholar 

  74. Endre Z, Ratcliffe P, Tange J, Ferguson D, Radda G, John L. Erythrocytes alters the pattern of renal hypoxic injury: predominance of proximal tubular injury with moderate hypoxia. Clin Sci. 1989;76:19–29.

    Article  CAS  Google Scholar 

  75. Zuk A, Bonventre J, Brown D, Matlin K. Polarity, integrin, and extracellular matrix dynamics in the postischemic rat kidney. Am J Physiol. 1998;275:C711–C31.

    Article  CAS  PubMed  Google Scholar 

  76. Westhuyzen J, Endre Z, Reece G, Reith D, Saltissi D, Morgan T. Measurement of tubular enzymuria facilitates early detection of acute renal impairment in the intensive care unit. Nephrol Dial Transplant. 2003;118:543–51.

    Article  Google Scholar 

  77. Choudhury D, Ahmed Z. Drug-associated renal dysfunction and injury. Nat Clin Pract Nephrol. 2006;2:80–91.

    Article  CAS  PubMed  Google Scholar 

  78. Portilla D, Li S, Nagothu K, Megyesi J, Kaissling B, Schnackenberg L, et al. Metabolomic study of cisplatin-induced nephrotoxicity. Kidney Int. 2006;69:2194–204.

    Article  CAS  PubMed  Google Scholar 

  79. Christensen E, Verroust P, Nielsen R. Receptor-mediated endocytosis in renal proximal tubule. Pflugers Arch. 2009;458:1039–48.

    Article  CAS  PubMed  Google Scholar 

  80. Christensen E, Birn H, Rippe B, Maunsbach A. Controversies in nephrology: renal albumin handling, facts, and artifacts! Kidney Int. 2007;72:1192–4.

    Article  CAS  PubMed  Google Scholar 

  81. Dieterle F, Perentes E, Cordier A, Roth D, Verdes P, Grenet O, et al. Urinary clusterin, cystatin C, β2-microglobulin and total protein as markers to detect drug-induced kidney injury. Nat Biotechnol. 2010;28:463–9.

    Article  CAS  PubMed  Google Scholar 

  82. Ma S, Nishikawa M, Hyoudou K, Takahashi R, Ikemura M, Kobayashi Y, et al. Combining cisplatin with cationized catalase decreases nephrotoxicity while improving antitumor activity. Kidney Int. 2007;72:1474–82.

    Article  CAS  PubMed  Google Scholar 

  83. Kaseda R, Iino N, Hosojima M, Takeda T, Hosaka K, Kobayashi A, et al. Megalin-mediated endocytosis of cystatin C in proximal tubule cells. Biochem Biophys Res Commun. 2007;357:1130–4.

    Article  CAS  PubMed  Google Scholar 

  84. Russo L, Sandoval R, Campos S, Molitoris B, Comper W, Brown D. Impaired tubular uptake explains albuminuria in early diabetic nephropathy. J Am Soc Nephrol. 2009;20:489–94.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Russo L, Sandoval R, McKee M, Osicka T, Collins A, Brown D, et al. The normal kidney filters nephrotic levels of albumin retrieved by proximal tubule cells: retrieval is disrupted in nephrotic states. Kidney Int. 2007;71:504–13.

    Article  CAS  PubMed  Google Scholar 

  86. Siddik Z. Cisplatin: mode of cytotoxic action and molecular basis of resistance. Oncogene. 2003;22:7265–79.

    Article  CAS  PubMed  Google Scholar 

  87. Endre Z, Pickering J. Acute kidney injury: cell cycle arrest biomarkers win race for AKI diagnosis. Nat Rev Nephrol. 2014;10(12):683–5.

    Article  PubMed  Google Scholar 

  88. Kashani K, Al-Khafaji A, Ardiles T, Artigas A, Bagshaw S, Bell M, et al. Discovery and validation of cell cycle arrest biomarkers in human acute kidney injury. Crit Care. 2013;1:1–12.

    Google Scholar 

  89. Meersch M, Schmidt C, Van Aken H, Martens S, Rossaint J, Singbartl K, et al. Urinary TIMP-2 and IGFBP7 as early biomarkers of acute kidney injury and renal recovery following cardiac surgery. PLoS One. 2014;9:1–9.

    Google Scholar 

  90. Canaud G, Bonventre J. Cell cycle arrest and the evolution of chronic kidney disease from acute kidney injury. Nephrol Dial Transplant. 2015;30:575–83.

    Article  CAS  PubMed  Google Scholar 

  91. Lee Y, Bae S, Won N, Pyo H, Kwon Y. Alpha-lipoic acid attenuates cisplatin-induced tubulointerstitial injuries through inhibition of mitochondrial bax translocation in rats. Nephron Exp Nephrol. 2009;113:e104–e12.

    Article  CAS  PubMed  Google Scholar 

  92. Pabla N, Dong Z. Cisplatin nephrotoxicity: mechanisms and renoprotective strategies. Kidney Int. 2008;73:994–1007.

    Article  CAS  PubMed  Google Scholar 

  93. Gobé G, Zhang X, Willgoss D, Schoch E, Hogg N, Endre Z. Relationship between expression of Bcl-2 genes and growth factors in ischemic acute renal failure in the rat. J Am Soc Nephrol. 2000;11:454–67.

    PubMed  Google Scholar 

  94. Johnson D, Pat B, Vesey D, Guan Z, Endre Z, Gobe G. Delayed administration of darbepoetin or erythropoietin protects against ischemic acute renal injury and failure. Kidney Int. 2006;69:1806–13.

    Article  CAS  PubMed  Google Scholar 

  95. Molitoris B, Sandoval R, Campos S, Ashush H, Fridman E, Brafman A, et al. siRNA targeted to p53 attenuates ischemic and cisplatin-induced acute kidney injury. J Am Soc Nephrol. 2009;20:1754–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Jordan S, Cronan J. A new metabolic link: the acyl carrier protein of lipid synthesis donates lipoic acid to the pyruvate dehydrogenase complex in Escherichia coli and mitochondria. J Biol Chem. 1997;272:17903–6.

    Article  CAS  PubMed  Google Scholar 

  97. Kozlov A, Gille L, Staniek K, Nohl H. Dihydrolipoic acid maintains ubiquinone in the antioxidant active form by two-electron reduction of ubiquinone and one-electron reduction of ubisemiquinone. Arch Biochem Biophys. 1999;363:148–54.

    Article  CAS  PubMed  Google Scholar 

  98. Wang Z, Gall J, Bonegio R, Havasi A, Hunt C, Sherman M, et al. Induction of heat shock protein 70 inhibits ischemic renal injury. Kidney Int. 2011;79:861–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Ratcliffe P, Moonen C, Endre Z, Blackledge M, Ledingham J, Radda G. 31P nuclear magnetic resonance in the investigation of renal ischemia during hypotension. Contrib Nephrol. 1987;56:152–8.

    Article  CAS  PubMed  Google Scholar 

  100. Liu H, Baliga R. Cytochrome P450 2E1 null mice provide novel protection against cisplatin-induced nephrotoxicity and apoptosis. Kidney Int. 2003;63:1687–96.

    Article  CAS  PubMed  Google Scholar 

  101. Liu H, Baliga R. Endoplasmic reticulum stress-associated caspase 12 mediates cisplatin-induced LLC-PK1 cell apoptosis. J Am Soc Nephrol. 2005;16:1985–92.

    Article  CAS  PubMed  Google Scholar 

  102. Abdel-latif R, Morsy M, El-Moselhy M, Khalifa M. Sildenafil protects against nitric oxide deficiency-related nephrotoxicity in cyclosporine A treated rats. Eur J Pharmacol. 2013;705:126–34.

    Article  CAS  PubMed  Google Scholar 

  103. Yu M, Xue J, Li Y, Zhang W, Ma D, Liu L, et al. Resveratrol protects against arsenic trioxide-induced nephrotoxicity by facilitating arsenic metabolism and decreasing oxidative stress. Arch Toxicol. 2013;87:1025–35.

    Article  CAS  PubMed  Google Scholar 

  104. Fonseca I, Reguengo H, Almeida M, Dias L, Martins L, Pedroso S, et al. Oxidative stress in kidney transplantation: malondialdehyde is an early predictive marker of graft dysfunction. Transplantation. 2014;97:1058–65.

    Article  CAS  PubMed  Google Scholar 

  105. Gobe G, Harmon B. Apoptosis: morphological criteria and other assays. Encyclopedia of life science. Chichester: Wiley; 2008.

    Google Scholar 

  106. Kaushal G, Shah S. Autophagy in acute kidney injury. Kidney Int. 2016;89:779–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Alejandro V, Scandling JJ, Sibley R, Dafoe D, Alfrey E, Deen W, et al. Mechanisms of filtration failure during postischemic injury of the human kidney. A study of the reperfused renal allograft. J Clin Invest. 1995;95:820–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Guan Z, Gobé G, Willgoss D, Endre Z. Renal endothelial dysfunction and impaired autoregulation after ischemia-reperfusion injury result from excess nitric oxide. Am J Physiol Renal Physiol. 2006;291:F619–F28.

    Article  CAS  PubMed  Google Scholar 

  109. Ergin B, Kapucu A, Demirci-Tansel C, Ince C. The renal microcirculation in sepsis. Nephrol Dial Transplant. 2015;30:169–77.

    Article  CAS  PubMed  Google Scholar 

  110. Sprague A, Khalil R. Inflammatory cytokines in vascular dysfunction and vascular disease. Biochem Pharmacol. 2009;78:539–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Kelly K, Williams WJ, Colvin R, Meehan S, Springer T, Gutierrez-Ramos J, et al. Intercellular adhesion molecule-1-deficient mice are protected against ischemic renal injury. J Clin Invest. 1996;97:1056–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Xu C, Chang A, Hack B, Eadon M, Alper S, Cunningham P. TNF-mediated damage to glomerular endothelium is an important determinant of acute kidney injury in sepsis. Kidney Int. 2014;85:72–81.

    Article  CAS  PubMed  Google Scholar 

  113. Ko G, Grigoryev D, Linfert D, Jang H, Watkins T, Cheadle C, et al. Transcriptional analysis of kidneys during repair from AKI reveals possible roles for NGAL and KIM-1 as biomarkers of AKI-to-CKD transition. Am J Physiol Renal Physiol. 2010;289:F1472–F83.

    Article  CAS  Google Scholar 

  114. Bae E, Lee J, Ma S, Kim I, Frøkiaer J, Nielsen S, et al. Alpha-Lipoic acid prevents cisplatin-induced acute kidney injury in rats. Nephrol Dial Transplant. 2009;24:2692–700.

    Article  CAS  PubMed  Google Scholar 

  115. Kwon O, Hong S, Ramesh G. Diminished NO generation by injured endothelium and loss of macula densa nNOS may contribute to sustained acute kidney injury after ischemia-reperfusion. Am J Physiol Renal Physiol. 2009;296:F25–33.

    Article  CAS  PubMed  Google Scholar 

  116. Mori K, Lee H, Rapoport D, Drexler I, Foster K, Yang J, et al. Endocytic delivery of lipocalin-siderophore-iron complex rescues the kidney from ischemia-reperfusion injury. J Clin Invest. 2005;115:610–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Paragas N, Qiu A, Zhang Q, Samstein B, Deng S, Schmidt-Ott K, et al. The Ngal reporter mouse detects the response of the kidney to injury in real time. Nat Med. 2011;17:216–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Supavekin S, Zhang W, Kucherlapati R, Kaskel F, Moore L, Devarajan P. Differential gene expression following early renal ischemia/reperfusion. Kidney Int. 2003;63:1714–24.

    Article  CAS  PubMed  Google Scholar 

  119. Efrati S, Berman S, Hamad R, Siman-Tov Y, Ilgiyaev E, Maslyakov I, et al. Effect of captopril treatment on recuperation from ischemia/reperfusion-induced acute renal injury. Nephrol Dial Transplant. 2012;27:136–45.

    Article  CAS  PubMed  Google Scholar 

  120. Molitoris B, Sutton T. Endothelial injury and dysfunction: role in the extension phase of acute renal failure. Kidney Int. 2004;66:496–9.

    Article  PubMed  Google Scholar 

  121. Salman I, Ameer O, Sattar M, Abdullah N, Yam M, Najim H, et al. Characterization of renal hemodynamic and structural alterations in rat models of renal impairment: role of renal sympathoexcitation. J Nephrol. 2011;24:68–77.

    Article  PubMed  Google Scholar 

  122. John R, Nelson P. Dendritic cells in the kidney. J Am Soc Nephrol. 2007;18:2628–35.

    Article  PubMed  Google Scholar 

  123. Umetsu S, Lee W, McIntire J, Downey L, Sanjanwala B, Akbari O, et al. TIM-1 induces T cell activation and inhibits the development of peripheral tolerance. Nat Immunol. 2005;6:447–54.

    Article  CAS  PubMed  Google Scholar 

  124. Thurman J, Lucia M, Ljubanovic D, Holers V. Acute tubular necrosis is characterized by activation of the alternative pathway of complement. Kidney Int. 2005;67:524–30.

    Article  CAS  PubMed  Google Scholar 

  125. Han W, Bailly V, Abichandani R, Thadhani R, Bonventre J. Kidney Injury Molecule-1 (KIM-1): a novel biomarker for human renal proximal tubule injury. Kidney Int. 2002;62:237–44.

    Article  CAS  PubMed  Google Scholar 

  126. Ichimura T, Asseldonk E, Humphreys B, Gunaratnam L, Duffield J, Bonventre J. Kidney injury molecule-1 is a phosphatidylserine receptor that confers a phagocytic phenotype on epithelial cells. J Clin Invest. 2008;118:1657–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Wu H, Craft M, Wang P, Wyburn K, Chen G, Ma J, et al. IL-18 contributes to renal damage after ischemia-reperfusion. J Am Soc Nephrol. 2008;19:2331–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Chen H, Lai P, Lan Y, Cheng C, Zhong W, Lin Y, et al. Exosomal ATF3 RNA attenuates pro-inflammatory gene MCP-1 transcription in renal ischemia-reperfusion. J Cell Physiol. 2014;229:1202–11.

    Article  CAS  PubMed  Google Scholar 

  129. Imamura K, Nishihira J, Suzuki M, Yasuda K, Sasaki S, Kusunoki Y, et al. Identification and immunohistochemical localization of macrophage migration inhibitory factor in human kidney. Biochem Mol Biol Int. 1996;40:1233–42.

    CAS  PubMed  Google Scholar 

  130. Izquierdo M, Sanz A, Mezzano S, Blanco J, Carrasco S, Sanchez-Niño M, et al. TWEAK (tumor necrosis factor-like weak inducer of apoptosis) activates CXCL16 expression during renal tubulointerstitial inflammation. Kidney Int. 2012;81:1098–107.

    Article  CAS  PubMed  Google Scholar 

  131. Barnes P, Karin M. Nuclear factor-kappaB: a pivotal transcription factor in chronic inflammatory diseases. N Engl J Med. 1997;336:1066–71.

    Article  CAS  PubMed  Google Scholar 

  132. Bolisetty S, Traylor A, Kim J, Joseph R, Ricart K, Landar A, et al. Heme oxygenase-1 inhibits renal tubular macroautophagy in acute kidney injury. J Am Soc Nephrol. 2010;21:1702–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Grigoryev D, Liu M, Hassoun H, Cheadle C, Barnes K. H R. The local and systemic inflammatory transcriptome after acute kidney injury. J Am Soc Nephrol. 2008;19:547–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Li X, Hassoun H, Santora R, Rabb H. Organ crosstalk: the role of the kidney. Curr Opin Crit Care. 2009;15:481–7.

    Article  PubMed  Google Scholar 

  135. Simmons E, Himmelfarb J, Sezer M, Chertow G, Mehta R, Paganini E, et al. Plasma cytokine levels predict mortality in patients with acute renal failure. Kidney Int. 2004;65:1357–65.

    Article  CAS  PubMed  Google Scholar 

  136. Pickering J, Endre Z. New metric for assessing diagnostic potential of candidate biomarkers. Clin J Am Soc Nephrol. 2012;7:1355–64.

    Article  PubMed  Google Scholar 

  137. Endre Z, Pickering J, Walker R. Clearance and beyond: the complementary roles of GFR measurement and injury biomarkers in acute kidney injury (AKI). Am J Physiol Renal Physiol. 2011;301:F697–707.

    Article  CAS  PubMed  Google Scholar 

  138. Coca S, Yalavarthy R, Concato J, Parikh C. Biomarkers for the diagnosis and risk stratification of acute kidney injury: a systematic review. Kidney Int. 2008;73:1008–16.

    Article  CAS  PubMed  Google Scholar 

  139. Cruz DD, Bagshaw S, Maisel A, Lewington A, Thadhani R, Chakravarthi R, et al. Use of biomarkers to assess prognosis and guide management of patients with acute kidney injury. Contrib Nephrol. 2013;182:45–64.

    Article  PubMed  Google Scholar 

  140. Murray P. Acute kidney injury biomarkers and endpoints for clinical trials. Contrib Nephrol. 2011;171:208–12.

    Article  PubMed  Google Scholar 

  141. Food and Drug Administration/Centre for Drug Evaluation and Research. Enrichment strategies. Small Business Chronicles. 2013;10:1–2.

    Google Scholar 

  142. Okusa M, Jaber BL, Doran P, Duranteau J, Yang L, Murray P, Mehta R, et al. Physiological biomarkers of acute kidney injury: a conceptual approach to improving outcomes. Contrib Nephrol. 2013;182:65–81.

    Article  PubMed  Google Scholar 

  143. Hvidberg V, Jacobsen C, Strong R, Cowland J, Moestrup S, Borregaard N. The endocytic receptor megalin binds the iron transporting neutrophil-gelatinase-associated lipocalin with high affinity and mediates its cellular uptake. FEBS Lett. 2005;579(3):773–7.

    Article  CAS  PubMed  Google Scholar 

  144. Bonventre J. Kidney Injury Molecule-1: a translational journey. Trans Am Clin Climatol Assoc. 2014;125:293–9.

    PubMed  PubMed Central  Google Scholar 

  145. Degauque N, Mariat C, Kenny J, Zhang D, Gao W, Vu M, et al. Immunostimulatory Tim-1-specific antibody deprograms Tregs and prevents transplant tolerance in mice. J Clin Invest. 2008;118:735–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Nozaki Y, Kinoshita K, Yano T, Asato K, Shiga T, Hino S, et al. Signaling through the interleukin-18 receptor α[alpha] attenuates inflammation in cisplatin-induced acute kidney injury. Kidney Int. 2012;82:892–902.

    Article  CAS  PubMed  Google Scholar 

  147. Zager R, Johnson A, Lund S. Uremia impacts renal inflammatory cytokine gene expression in the setting of experimental acute kidney injury. Am J Renal Physiol. 2009;297:F961–F70.

    Article  CAS  Google Scholar 

  148. Hong M-Y, Tseng C-C, Chuang C-C, Chen C-L, Lin S-H, Lin C-F. Urinary macrophage migration inhibitory factor serves as a potential biomarker for acute kidney injury in patients with acute pyelonephritis. Mediat Inflamm. 2012;2012:1–9.

    Article  CAS  Google Scholar 

  149. Rice E, Tesch G, Cao Z, Cooper M, Metz C, Bucala R, et al. Induction of MIF synthesis and secretion by tubular epithelial cells: a novel action of angiotensin II. Kidney Int. 2003;63:1265–75.

    Article  CAS  PubMed  Google Scholar 

  150. Mount P, Gleich K, Tam S, Fraser S, Choy S-W, Dwyer K, et al. The outcome of renal ischemia-reperfusion injury is unchanged in AMPK-β1 deficient mice. PLoS One. 2012;7(1):e29887.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Haase M, Devarajan P, Haase-Fielitz A, Bellomo R, Cruz D, Wagener G, et al. The outcome of neutrophil gelatinase-associated lipocalin-positive subclinical acute kidney injury: a multicenter pooled analysis of prospective studies. J Am Coll Cardiol. 2011;57:1752–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Nickolas T, Schmidt-Ott K, Canetta P, Forster C, Singer E, Sise M, et al. Diagnostic and prognostic stratification in the emergency department using urinary biomarkers of nephron damage: a multicenter prospective cohort study. J Am Coll Cardiol. 2012;59:246–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Bellomo R, Ronco C, Kellum J, Mehta R, Palevsky P, Acute Dialysis Quality Initiative Workgroup. Acute renal failure—definition, outcome measures, animal models, fluid therapy and information technology needs: the Second International Consensus Conference of the Acute Dialysis Quality Initiative (ADQI) Group. Crit Care. 2004;8:R204–R12.

    Article  PubMed  PubMed Central  Google Scholar 

  154. Harpur E, Ennulat D, Hoffman D, Betton G, Gautier J, Riefke B, et al. Biological qualification of biomarkers of chemical-induced renal toxicity in two strains of male rat. Toxicol Sci. 2011;122:235–52.

    Article  CAS  PubMed  Google Scholar 

  155. Pianta TJ, Succar L, Davidson T, Buckley NA, Endre ZH. Monitoring treatment of acute kidney injury with damage biomarkers. Toxicol Lett. 2017;268:63–70. https://doi.org/10.1016/j.toxlet.2017.01.001.

    Article  CAS  PubMed  Google Scholar 

  156. Yang L, Besschetnova T, Brooks C, Shah J, Bonventre J. Epithelial cell cycle arrest in G2/M mediates kidney fibrosis after injury. Nat Med. 2010;16:535–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Jung G, Kim M, Jung Y, Kim H, Park I, Min B, et al. Clusterin attenuates the development of renal fibrosis. J Am Soc Nephrol. 2012;23:73–85.

    Article  CAS  PubMed  Google Scholar 

  158. Nguanm C, Guan Q, Gleave M, Du C. Promotion of cell proliferation by clusterin in the renal tissue repair phase after ischemia-reperfusion injury. Am J Physiol Renal Physiol. 2014;306:F724–F33.

    Article  CAS  Google Scholar 

  159. Hidaka S, Kränzlin B, Gretz N, Witzgall R. Urinary clusterin levels in the rat correlate with the severity of tubular damage and may help to differentiate between glomerular and tubular injuries. Cell Tissue Res. 2002;310:289–96.

    Article  CAS  PubMed  Google Scholar 

  160. Yoshida T, Kurella M, Beato F, Min H, Ingelfinger J, Stears R, et al. Monitoring changes in gene expression in renal ischemia-reperfusion in the rat. Kidney Int. 2002;61:1646–54.

    Article  CAS  PubMed  Google Scholar 

  161. Correa-Rotter R, Hostetter T, Nath K, Manivel J, Rosenberg M. Interaction of complement and clusterin in renal injury. J Am Soc Nephrol. 1992;3:1172–9.

    CAS  PubMed  Google Scholar 

  162. Chawla L, Eggers P, Star R, Kimmel P. Acute kidney injury and chronic kidney disease as interconnected syndromes. N Engl J Med. 2014;371:58–66.

    Article  CAS  PubMed  Google Scholar 

  163. Kriz W, Kaissling B, Hir ML. Epithelial-mesenchymal transition (EMT) in kidney fibrosis: fact or fantasy? J Clin Invest. 2011;121:468–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Hohenstein B, Renk S, Lang K, Daniel C, Freund M, Léon C, et al. P2Y1 gene deficiency protects from renal disease progression and capillary rarefaction during passive crescentic glomerulonephritis. J Am Soc Nephrol. 2007;18:494–505.

    Article  CAS  PubMed  Google Scholar 

  165. Johnson R, Gordon K, Suga S, Duijvestijn A, Griffin K, Bidani A. Renal injury and salt-sensitive hypertension after exposure to catecholamines. Hypertension. 1999;34:151–9.

    Article  CAS  PubMed  Google Scholar 

  166. Kanellis J, Paizis K, Cox A, Stacker S, Gilbert R, Cooper M, et al. Renal ischemia-reperfusion increases endothelial VEGFR-2 without increasing VEGF or VEGFR-1 expression. Kidney Int. 2002;61:1696–706.

    Article  CAS  PubMed  Google Scholar 

  167. Basile D, Fredrich K, Chelladurai B, Leonard E, Parrish A. Renal ischemia reperfusion inhibits VEGF expression and induces ADAMTS-1, a novel VEGF inhibitor. Am J Physiol Renal Physiol. 2008;294:F928–F36.

    Article  CAS  PubMed  Google Scholar 

  168. Vaidya V, Waikar S, Ferguson M, Collings F, Sunderland K, Gioules C, et al. Urinary biomarkers for sensitive and specific detection of acute kidney injury in humans. Clin Transl Sci. 2008;1:200–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. de Caestecker M, Humphreys B, Liu K, Fissell W, Cerda J, Nolin T, et al. Bridging translation by improving preclinical study design in AKI. J Am Soc Nephrol. 2015;26:2905–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Ricksten S-E, Bragadottir G, Redfors B. Renal oxygenation in clinical acute kidney injury. Crit Care. 2013;17:1–10.

    Article  Google Scholar 

  171. Linkermann A, Himmerkus N, Rölver L, Keyser K, Steen P, Bräsen J, et al. Renal tubular Fas ligand mediates fratricide in cisplatin-induced acute kidney failure. Kidney Int. 2011;79:169–78.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zoltan H. Endre .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pianta, T.J., Gobe, G.C., Owens, E.P., Endre, Z.H. (2018). Overview of Pathophysiology of Acute Kidney Injury: Human Evidence, Mechanisms, Pathological Correlations and Biomarkers and Animal Models. In: Waikar, S., Murray, P., Singh, A. (eds) Core Concepts in Acute Kidney Injury. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-8628-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8628-6_4

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-8626-2

  • Online ISBN: 978-1-4939-8628-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics