Skip to main content

Non-dialytic Management of Acute Kidney Injury

  • Chapter
  • First Online:
  • 1664 Accesses

Abstract

The treatment of acute kidney injury (AKI) prior to institution of renal replacement therapy (RRT) has traditionally focused on the management of life-threatening metabolic abnormalities in advanced kidney failure. However, an increased awareness of AKI and a systematic approach to its diagnosis to earlier stages has shifted emphasis to the management of milder AKI, often arising as a complication of other systemic insults such as sepsis or following major surgery. Importantly, while most of these patients never need RRT, they are at significantly increased risk of death. In this context AKI is best understood as an indicator of early organ dysfunction in the deteriorating patient. As a consequence, the clinical approach to AKI requires consideration and treatment of underlying causes of AKI such as unrecognized sepsis together with haemodynamic resuscitation aimed at preserving tissue perfusion, an enhanced level of monitoring for further deterioration and avoidance of secondary organ injury by minimization of nephrotoxin exposure and avoidance of other complications. Fluid therapy and vasopressor are the cornerstones of resuscitative therapies in these patients; however overzealous fluid resuscitation risks fluid overload which has been consistently associated with adverse outcomes in the critically ill and particularly in individuals with AKI. Thus after the initial few hours of emergency resuscitation, continued fluid therapy needs to be continuously re-evaluated against a physiological need (evidence of low cardiac output and evidence of fluid responsiveness). Conversely, vasopressor therapy in hyperdynamic shock can improve renal perfusion and function with higher blood pressure targets potentially justified in patients with pre-existing chronic hypertension.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Kerr M, Bedford M, Matthews B, O’Donoghue D. The economic impact of acute kidney injury in England. Nephrol Dial Transplant. 2014;29(7):1362–8.

    Article  PubMed  Google Scholar 

  2. Kidney Disease Improving Global Outcomes. KDIGO clinical practice guideline for acute kidney injury; section 2: AKI definition. Kidney Int Suppl (2011). 2012;2(1):19–36.

    Article  Google Scholar 

  3. Bellomo R, Ronco C, Kellum JA, Mehta RL, Palevsky P. Acute renal failure—definition, outcome measures, animal models, fluid therapy and information technology needs: the Second International Consensus Conference of the Acute Dialysis Quality Initiative (ADQI) Group. Crit Care. 2004;8(4):R204–12.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Mehta RL, Kellum JA, Shah SV, Molitoris BA, Ronco C, Warnock DG, Levin A. Acute Kidney Injury Network: report of an initiative to improve outcomes in acute kidney injury. Crit Care. 2007;11(2):R31.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Bywaters EG, Beall D. Crush injuries with impairment of renal function. Br Med J. 1941;1(4185):427–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Oliver J, Mac DM, Tracy A. The pathogenesis of acute renal failure associated with traumatic and toxic injury; renal ischemia, nephrotoxic damage and the ischemic episode. J Clin Invest. 1951;30(12:1):1307–439.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Bull GM, Joekes AM, Lowe KG. Conservative treatment of anuric uraemia. Lancet. 1949;2(6571):229–34.

    Article  CAS  PubMed  Google Scholar 

  8. Borst JG. Protein katabolism in uraemia; effects of protein-free diet, infections, and blood-transfusions. Lancet. 1948;1(6509):824–9.

    Article  CAS  PubMed  Google Scholar 

  9. Uchino S, Kellum JA, Bellomo R, Doig GS, Morimatsu H, Morgera S, Schetz M, Tan I, Bouman C, Macedo E, et al. Acute renal failure in critically ill patients: a multinational, multicenter study. JAMA. 2005;294(7):813–8.

    Article  CAS  PubMed  Google Scholar 

  10. Chawla LS, Eggers PW, Star RA, Kimmel PL. Acute kidney injury and chronic kidney disease as interconnected syndromes. N Engl J Med. 2014;371(1):58–66.

    Article  CAS  PubMed  Google Scholar 

  11. Hoste EAJ, Clermont G, Kersten A, Venkataraman R, Angus DC, De Bacquer D, Kellum JA. RIFLE criteria for acute kidney injury are associated with hospital mortality in critically ill patients: a cohort analysis. Crit Care. 2006;10(3):R73.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Ostermann M, Chang RW. Acute kidney injury in the intensive care unit according to RIFLE. Crit Care Med. 2007;35(8):1837–43; quiz 1852.

    Article  PubMed  Google Scholar 

  13. Chertow GM, Burdick E, Honour M, Bonventre JV, Bates DW. Acute kidney injury, mortality, length of stay, and costs in hospitalized patients. J Am Soc Nephrol. 2005;16(11):3365–70.

    Article  PubMed  Google Scholar 

  14. Schetz M, Gunst J, Van den Berghe G. The impact of using estimated GFR versus creatinine clearance on the evaluation of recovery from acute kidney injury in the ICU. Intensive Care Med. 2014;40(11):1709–17.

    Article  CAS  PubMed  Google Scholar 

  15. Pickering JW, Ralib AM, Endre ZH. Combining creatinine and volume kinetics identifies missed cases of acute kidney injury following cardiac arrest. Crit Care. 2013;17(1):R7.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Porter CJ, Juurlink I, Bisset LH, Bavakunji R, Mehta RL, Devonald MA. A real-time electronic alert to improve detection of acute kidney injury in a large teaching hospital. Nephrol Dial Transplant. 2014;29(10):1888–93.

    Article  PubMed  Google Scholar 

  17. Selby NM, Crowley L, Fluck RJ, McIntyre CW, Monaghan J, Lawson N, Kolhe NV. Use of electronic results reporting to diagnose and monitor AKI in hospitalized patients. Clin J Am Soc Nephrol. 2012;7(4):533–40.

    Article  PubMed  Google Scholar 

  18. Wilson FP, Shashaty M, Testani J, Aqeel I, Borovskiy Y, Ellenberg SS, Feldman HI, Fernandez H, Gitelman Y, Lin J, et al. Automated, electronic alerts for acute kidney injury: a single-blind, parallel-group, randomised controlled trial. Lancet. 2015;385(9981):1966–74.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Lin J, Fernandez H, Shashaty MG, Negoianu D, Testani JM, Berns JS, Parikh CR, Wilson FP. False-positive rate of AKI using consensus creatinine-based criteria. Clin J Am Soc Nephrol. 2015;10(10):1723–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Prowle J, Bellomo R. Urine output and the diagnosis of acute kidney injury. In: Annual update in intensive care and emergency medicine 2012; Springer: Berlin/Heidelberg; 2012. p. 628–40.

    Google Scholar 

  21. Alge JL, Arthur JM. Biomarkers of AKI: a review of mechanistic relevance and potential therapeutic implications. Clin J Am Soc Nephrol. 2015;10(1):147–55.

    Article  CAS  PubMed  Google Scholar 

  22. Cruz DN, Bagshaw SM, Maisel A, Lewington A, Thadhani R, Chakravarthi R, Murray PT, Mehta RL, Chawla LS. Use of biomarkers to assess prognosis and guide management of patients with acute kidney injury. Contrib Nephrol. 2013;182:45–64.

    Article  PubMed  Google Scholar 

  23. AKI Care Bundle. http://www.londonaki.net/clinical/guidelines-pathways.html.

  24. Jacobs R, Honore PM, Joannes-Boyau O, Boer W, De Regt J, De Waele E, Collin V, Spapen HD. Septic acute kidney injury: the culprit is inflammatory apoptosis rather than ischemic necrosis. Blood Purif. 2011;32(4):262–5.

    Article  CAS  PubMed  Google Scholar 

  25. Prowle JR, Bellomo R. Sepsis-associated acute kidney injury: macrohemodynamic and microhemodynamic alterations in the renal circulation. Semin Nephrol. 2015;35(1):64–74.

    Article  PubMed  Google Scholar 

  26. Lipcsey M, Bellomo R. Septic acute kidney injury: hemodynamic syndrome, inflammatory disorder, or both? Crit Care. 2011;15(6):1008.

    Article  PubMed  PubMed Central  Google Scholar 

  27. LeDoux D, Astiz ME, Carpati CM, Rackow EC. Effects of perfusion pressure on tissue perfusion in septic shock. Crit Care Med. 2000;28:2729–32.

    Article  CAS  PubMed  Google Scholar 

  28. Marik PE, Baram M, Vahid B. Does central venous pressure predict fluid responsiveness? A systematic review of the literature and the tale of seven mares. Chest. 2008;134:172–8.

    Article  PubMed  Google Scholar 

  29. Michard F, Teboul JL. Predicting fluid responsiveness in ICU patients: a critical analysis of the evidence. Chest. 2002;121:2000–8.

    Article  PubMed  Google Scholar 

  30. Bouhemad B. Isolated and reversible impairment of ventricular relaxation in patients with septic shock. Crit Care Med. 2008;36:766–74.

    Article  PubMed  Google Scholar 

  31. Bouhemad B. Acute left ventricular dilatation and shock-induced myocardial dysfunction. Crit Care Med. 2009;37:441–7.

    Article  PubMed  Google Scholar 

  32. Rudiger A, Singer M. Mechanisms of sepsis-induced cardiac dysfunction. Crit Care Med. 2007;35:1599–608.

    Article  PubMed  Google Scholar 

  33. Di Giantomasso D, May CN, Bellomo R. Vital organ blood flow during hyperdynamic sepsis. Chest. 2003;124:1053–9.

    Article  PubMed  Google Scholar 

  34. Ruokonen E. Regional blood flow and oxygen transport in septic shock. Crit Care Med. 1993;21:1296–303.

    Article  CAS  PubMed  Google Scholar 

  35. Fleck A. Increased vascular permeability: a major cause of hypoalbuminaemia in disease and injury. Lancet. 1985;325:781–4.

    Article  Google Scholar 

  36. Marik PE, Cavallazzi R. Does the central venous pressure predict fluid responsiveness? An updated meta-analysis and a plea for some common sense. Crit Care Med. 2013;41(7):1774–81.

    Article  PubMed  Google Scholar 

  37. Marik PE, Bellomo R, Demla V. Lactate clearance as a target of therapy in sepsis: a flawed paradigm. OA Critical Care. 2013;1:3.

    Article  Google Scholar 

  38. Wan L, Bellomo R, May CN. A comparison of 4% succinylated gelatin solution versus normal saline in stable normovolaemic sheep: global haemodynamic, regional blood flow and oxygen delivery effects. Anaesth Intensive Care. 2007;35(6):924–31.

    CAS  PubMed  Google Scholar 

  39. Legrand M, Mik EG, Balestra GM, Lutter R, Pirracchio R, Payen D, Ince C. Fluid resuscitation does not improve renal oxygenation during hemorrhagic shock in rats. Anesthesiology. 2010;112(1):119–27.

    Article  PubMed  Google Scholar 

  40. Wan L, Bellomo R, May CN. The effect of normal saline resuscitation on vital organ blood flow in septic sheep. Intensive Care Med. 2006;32(8):1238–42.

    Article  CAS  PubMed  Google Scholar 

  41. Prowle JR, Chua HR, Bagshaw SM, Bellomo R. Clinical review: volume of fluid resuscitation and the incidence of acute kidney injury—a systematic review. Crit Care. 2012;16(4):230.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Mouncey PR, Osborn TM, Power GS, Harrison DA, Sadique MZ, Grieve RD, Jahan R, Harvey SE, Bell D, Bion JF, et al. Trial of early, goal-directed resuscitation for septic shock. N Engl J Med. 2015;372(14):1301–11.

    Article  CAS  PubMed  Google Scholar 

  43. Investigators A, Group ACT, Peake SL, Delaney A, Bailey M, Bellomo R, Cameron PA, Cooper DJ, Higgins AM, Holdgate A, et al. Goal-directed resuscitation for patients with early septic shock. N Engl J Med. 2014;371(16):1496–506.

    Article  CAS  Google Scholar 

  44. Pro CI, Yealy DM, Kellum JA, Huang DT, Barnato AE, Weissfeld LA, Pike F, Terndrup T, Wang HE, Hou PC, et al. A randomized trial of protocol-based care for early septic shock. N Engl J Med. 2014;370(18):1683–93.

    Article  CAS  Google Scholar 

  45. Firth JD, Raine AE, Ledingham JG. Raised venous pressure: a direct cause of renal sodium retention in oedema? Lancet. 1988;1(8593):1033–5.

    Article  CAS  PubMed  Google Scholar 

  46. Dalfino L, Tullo L, Donadio I, Malcangi V, Brienza N. Intra-abdominal hypertension and acute renal failure in critically ill patients. Intensive Care Med. 2008;34(4):707–13.

    Article  PubMed  Google Scholar 

  47. Vidal MG, Ruiz Weisser J, Gonzalez F, Toro MA, Loudet C, Balasini C, Canales H, Reina R, Estenssoro E. Incidence and clinical effects of intra-abdominal hypertension in critically ill patients. Crit Care Med. 2008;36(6):1823–31.

    Article  PubMed  Google Scholar 

  48. Malbrain ML. Incidence and prognosis of intraabdominal hypertension in a mixed population of critically ill patients: a multiple-center epidemiological study. Crit Care Med. 2005;33:315–22.

    Article  PubMed  Google Scholar 

  49. Prowle JR, Kirwan CJ, Bellomo R. Fluid management for the prevention and attenuation of acute kidney injury. Nat Rev Nephrol. 2014;10(1):37–47.

    Article  CAS  PubMed  Google Scholar 

  50. Payen D, de Pont AC, Sakr Y, Spies C, Reinhart K, Vincent JL, Sepsis Occurrence in Acutely Ill Patients (SOAP) Investigators. A positive fluid balance is associated with a worse outcome in patients with acute renal failure. Crit Care. 2008;12(3):R74.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Bouchard J, Soroko SB, Chertow GM, Himmelfarb J, Ikizler TA, Paganini EP, Mehta RL. Fluid accumulation, survival and recovery of kidney function in critically ill patients with acute kidney injury. Kidney Int. 2009;76(4):422–7.

    Article  PubMed  Google Scholar 

  52. Teixeira C, Garzotto F, Piccinni P, Brienza N, Iannuzzi M, Gramaticopolo S, Forfori F, Rocco M, Ronco C, Belluomo Anello C, et al. Fluid balance and urine volume are independent predictors of mortality in acute kidney injury. Crit Care. 2013;17(1):R14.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Basu RK, Andrews A, Krawczeski C, Manning P, Wheeler DS, Goldstein SL. Acute kidney injury based on corrected serum creatinine is associated with increased morbidity in children following the arterial switch operation. Pediatr Crit Care Med. 2013;14(5):e218–24.

    Article  PubMed  Google Scholar 

  54. Fulop T, Pathak MB, Schmidt DW, Lengvarszky Z, Juncos JP, Lebrun CJ, Brar H, Juncos LA. Volume-related weight gain and subsequent mortality in acute renal failure patients treated with continuous renal replacement therapy. ASAIO J. 2010;56(4):333–7.

    PubMed  PubMed Central  Google Scholar 

  55. Grams ME, Estrella MM, Coresh J, Brower RG, Liu KD, National Heart L, Blood Institute Acute Respiratory Distress Syndrome N. Fluid balance, diuretic use, and mortality in acute kidney injury. Clin J Am Soc Nephrol. 2011;6(5):966–73.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Sutherland SM, Zappitelli M, Alexander SR, Chua AN, Brophy PD, Bunchman TE, Hackbarth R, Somers MJ, Baum M, Symons JM, et al. Fluid overload and mortality in children receiving continuous renal replacement therapy: the prospective pediatric continuous renal replacement therapy registry. Am J Kidney Dis. 2010;55(2):316–25.

    Article  PubMed  Google Scholar 

  57. Vaara ST, Korhonen AM, Kaukonen KM, Nisula S, Inkinen O, Hoppu S, Laurila JJ, Mildh L, Reinikainen M, Lund V, et al. Fluid overload is associated with an increased risk for 90-day mortality in critically ill patients with renal replacement therapy: data from the prospective FINNAKI study. Crit Care. 2012;16(5):R197.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Dass B, Shimada M, Kambhampati G, Ejaz NI, Arif AA, Ejaz AA. Fluid balance as an early indicator of acute kidney injury in CV surgery. Clin Nephrol. 2012;77(6):438–44.

    Article  PubMed  Google Scholar 

  59. Kambhampati G, Ross EA, Alsabbagh MM, Asmar A, Pakkivenkata U, Ejaz NI, Arif AA, Ejaz AA. Perioperative fluid balance and acute kidney injury. Clin Exp Nephrol. 2012;16(5):730–8.

    Article  PubMed  Google Scholar 

  60. Goldstein SL, Somers MJ, Baum MA, Symons JM, Brophy PD, Blowey D, Bunchman TE, Baker C, Mottes T, McAfee N, et al. Pediatric patients with multi-organ dysfunction syndrome receiving continuous renal replacement therapy. Kidney Int. 2005;67(2):653–8.

    Article  PubMed  Google Scholar 

  61. Prowle JR, Echeverri JE, Ligabo EV, Ronco C, Bellomo R. Fluid balance and acute kidney injury. Nat Rev Nephrol. 2010;6(2):107–15.

    Article  PubMed  Google Scholar 

  62. Jungheinrich C, Neff TA. Pharmacokinetics of hydroxyethyl starch. Clin Pharmacokinet. 2005;44(7):681–99.

    Article  CAS  PubMed  Google Scholar 

  63. Finfer S, Bellomo R, Boyce N, French J, Myburgh J, Norton R, Investigators SS. A comparison of albumin and saline for fluid resuscitation in the intensive care unit. N Engl J Med. 2004;350(22):2247–56.

    Article  CAS  PubMed  Google Scholar 

  64. Myburgh JA, Finfer S, Bellomo R, Billot L, Cass A, Gattas D, Glass P, Lipman J, Liu B, McArthur C, et al. Hydroxyethyl starch or saline for fluid resuscitation in intensive care. N Engl J Med. 2012;367(20):1901–11.

    Article  CAS  PubMed  Google Scholar 

  65. Perner A, Haase N, Guttormsen AB, Tenhunen J, Klemenzson G, Aneman A, Madsen KR, Moller MH, Elkjaer JM, Poulsen LM, et al. Hydroxyethyl starch 130/0.42 versus Ringer’s acetate in severe sepsis. N Engl J Med. 2012;367(2):124–34.

    Article  CAS  PubMed  Google Scholar 

  66. Guidet B, Martinet O, Boulain T, Philippart F, Poussel JF, Maizel J, Forceville X, Feissel M, Hasselmann M, Heininger A, et al. Assessment of hemodynamic efficacy and safety of 6% hydroxyethylstarch 130/0.4 vs. 0.9% NaCl fluid replacement in patients with severe sepsis: the CRYSTMAS study. Crit Care. 2012;16(3):R94.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Bayer O, Reinhart K, Kohl M, Kabisch B, Marshall J, Sakr Y, Bauer M, Hartog C, Schwarzkopf D, Riedemann N. Effects of fluid resuscitation with synthetic colloids or crystalloids alone on shock reversal, fluid balance, and patient outcomes in patients with severe sepsis: a prospective sequential analysis. Crit Care Med. 2012;40(9):2543–51.

    Article  CAS  PubMed  Google Scholar 

  68. Haase N, Perner A, Hennings LI, Siegemund M, Lauridsen B, Wetterslev M, Wetterslev J. Hydroxyethyl starch 130/0.38–0.45 versus crystalloid or albumin in patients with sepsis: systematic review with meta-analysis and trial sequential analysis. BMJ. 2013;346:f839.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Zarychanski R, Abou-Setta AM, Turgeon AF, Houston BL, McIntyre L, Marshall JC, Fergusson DA. Association of hydroxyethyl starch administration with mortality and acute kidney injury in critically ill patients requiring volume resuscitation: a systematic review and meta-analysis. JAMA. 2013;309(7):678–88.

    Article  CAS  PubMed  Google Scholar 

  70. Perel P, Roberts I, Ker K. Colloids versus crystalloids for fluid resuscitation in critically ill patients. Cochrane Database Syst Rev. 2013;2:CD000567.

    Google Scholar 

  71. Yunos NM, Kim IB, Bellomo R, Bailey M, Ho L, Story D, Gutteridge GA, Hart GK. The biochemical effects of restricting chloride-rich fluids in intensive care. Crit Care Med. 2011;39(11):2419–24.

    Article  CAS  PubMed  Google Scholar 

  72. Shaw AD, Bagshaw SM, Goldstein SL, Scherer LA, Duan M, Schermer CR, Kellum JA. Major complications, mortality, and resource utilization after open abdominal surgery: 0.9% saline compared to Plasma-Lyte. Ann Surg. 2012;255(5):821–9.

    Article  PubMed  Google Scholar 

  73. Yunos NM, Bellomo R, Hegarty C, Story D, Ho L, Bailey M. Association between a chloride-liberal vs chloride-restrictive intravenous fluid administration strategy and kidney injury in critically ill adults. JAMA. 2012;308(15):1566–72.

    Article  CAS  PubMed  Google Scholar 

  74. Chowdhury AH, Cox EF, Francis ST, Lobo DN. A randomized, controlled, double-blind crossover study on the effects of 2-L infusions of 0.9% saline and plasma-lyte 148 on renal blood flow velocity and renal cortical tissue perfusion in healthy volunteers. Ann Surg. 2012;256(1):18–24.

    Article  PubMed  Google Scholar 

  75. Bullivant EM, Wilcox CS, Welch WJ. Intrarenal vasoconstriction during hyperchloremia: role of thromboxane. Am J Phys. 1989;256(1 Pt 2):F152–7.

    CAS  Google Scholar 

  76. Yunos NM, Bellomo R, Story D, Kellum J. Bench-to-bedside review: chloride in critical illness. Crit Care. 2010;14(4):226.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Young P, Bailey M, Beasley R, Henderson S, Mackle D, McArthur C, McGuinness S, Mehrtens J, Myburgh J, Psirides A, et al. Effect of a buffered crystalloid solution vs saline on acute kidney injury among patients in the intensive care unit: the SPLIT randomized clinical trial. JAMA. 2015;314(16):1701–10.

    Article  CAS  PubMed  Google Scholar 

  78. Bellomo R, Kellum JA, Wisniewski SR, Pinsky MR. Effects of norepinephrine on the renal vasculature in normal and endotoxemic dogs. Am J Respir Crit Care Med. 1999;159(4 Pt 1):1186–92.

    Article  CAS  PubMed  Google Scholar 

  79. Anderson WP, Korner PI, Selig SE. Mechanisms involved in the renal responses to intravenous and renal artery infusions of noradrenaline in conscious dogs. J Physiol. 1981;321:21–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Martin C, Papazian L, Perrin G, Saux P, Gouin F. Norepinephrine or dopamine for the treatment of hyperdynamic septic shock? Chest. 1993;103(6):1826–31.

    Article  CAS  PubMed  Google Scholar 

  81. Redfors B, Bragadottir G, Sellgren J, Sward K, Ricksten SE. Effects of norepinephrine on renal perfusion, filtration and oxygenation in vasodilatory shock and acute kidney injury. Intensive Care Med. 2011;37(1):60–7.

    Article  CAS  PubMed  Google Scholar 

  82. Badin J, Boulain T, Ehrmann S, Skarzynski M, Bretagnol A, Buret J, Benzekri-Lefevre D, Mercier E, Runge I, Garot D, et al. Relation between mean arterial pressure and renal function in the early phase of shock: a prospective, explorative cohort study. Crit Care. 2011;15(3):R135.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Liu YL, Prowle J, Licari E, Uchino S, Bellomo R. Changes in blood pressure before the development of nosocomial acute kidney injury. Nephrol Dial Transplant. 2009;24(2):504–11.

    Article  PubMed  Google Scholar 

  84. Panwar R, Lanyon N, Davies AR, Bailey M, Pilcher D, Bellomo R. Mean perfusion pressure deficit during the initial management of shock—an observational cohort study. J Crit Care. 2013;28(5):816–24.

    Article  PubMed  Google Scholar 

  85. Asfar P, Meziani F, Hamel JF, Grelon F, Megarbane B, Anguel N, Mira JP, Dequin PF, Gergaud S, Weiss N, et al. High versus low blood-pressure target in patients with septic shock. N Engl J Med. 2014;370(17):1583–93.

    Article  CAS  PubMed  Google Scholar 

  86. Prowle JR, Bellomo R. Acute kidney injury: specific interventions and drugs. In: Jörres A, et al., editors. Management of acute kidney problems. Berlin/Heidelberg: Springer; 2010. p. 229–39.

    Chapter  Google Scholar 

  87. Bellomo R, Chapman M, Finfer S, Hickling K, Myburgh J. Low-dose dopamine in patients with early renal dysfunction: a placebo-controlled randomised trial. Australian and New Zealand Intensive Care Society (ANZICS) Clinical Trials Group. Lancet. 2000;356(9248):2139–43.

    Article  CAS  PubMed  Google Scholar 

  88. Gillies MA, Kakar V, Parker RJ, Honore PM, Ostermann M. Fenoldopam to prevent acute kidney injury after major surgery-a systematic review and meta-analysis. Crit Care. 2015;19:449.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Bove T, Zangrillo A, Guarracino F, Alvaro G, Persi B, Maglioni E, Galdieri N, Comis M, Caramelli F, Pasero DC, et al. Effect of fenoldopam on use of renal replacement therapy among patients with acute kidney injury after cardiac surgery: a randomized clinical trial. JAMA. 2014;312(21):2244–53.

    Article  PubMed  CAS  Google Scholar 

  90. Gordon AC, Russell JA, Walley KR, Singer J, Ayers D, Storms MM, Holmes CL, Hebert PC, Cooper DJ, Mehta S, et al. The effects of vasopressin on acute kidney injury in septic shock. Intensive Care Med. 2010;36(1):83–91.

    Article  CAS  PubMed  Google Scholar 

  91. Gordon AC, Mason AJ, Perkins GD, Ashby D, Brett SJ. Protocol for a randomised controlled trial of VAsopressin versus Noradrenaline as Initial therapy in Septic sHock (VANISH). BMJ Open. 2014;4(7):e005866.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Zhou C, Gong J, Chen D, Wang W, Liu M, Liu B. Levosimendan for prevention of acute kidney injury after cardiac surgery: a meta-analysis of randomized controlled trials. Am J Kidney Dis. 2016;67(3):408–16.

    Article  CAS  PubMed  Google Scholar 

  93. Morelli A, De Castro S, Teboul JL, Singer M, Rocco M, Conti G, De Luca L, Di Angelantonio E, Orecchioni A, Pandian NG, et al. Effects of levosimendan on systemic and regional hemodynamics in septic myocardial depression. Intensive Care Med. 2005;31(5):638–44.

    Article  PubMed  Google Scholar 

  94. Orme RM, Perkins GD, McAuley DF, Liu KD, Mason AJ, Morelli A, Singer M, Ashby D, Gordon AC. An efficacy and mechanism evaluation study of Levosimendan for the Prevention of Acute oRgan Dysfunction in Sepsis (LeoPARDS): protocol for a randomized controlled trial. Trials. 2014;15:199.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. Goldstein S, Bagshaw S, Cecconi M, Okusa M, Wang H, Kellum J, Mythen M, Shaw AD, Group AXI. Pharmacological management of fluid overload. Br J Anaesth. 2014;113(5):756–63.

    Article  PubMed  Google Scholar 

  96. Uchino S, Doig GS, Bellomo R, Morimatsu H, Morgera S, Schetz M, Tan I, Bouman C, Nacedo E, Gibney N, et al. Diuretics and mortality in acute renal failure. Crit Care Med. 2004;32(8):1669–77.

    Article  PubMed  Google Scholar 

  97. Mehta RL, Pascual MT, Soroko S, Chertow GM, Group PS. Diuretics, mortality, and nonrecovery of renal function in acute renal failure. JAMA. 2002;288(20):2547–53.

    Article  CAS  PubMed  Google Scholar 

  98. Chawla LS, Davison DL, Brasha-Mitchell E, Koyner JL, Arthur JM, Shaw AD, Tumlin JA, Trevino SA, Kimmel PL, Seneff MG. Development and standardization of a furosemide stress test to predict the severity of acute kidney injury. Crit Care. 2013;17(5):R207.

    Article  PubMed  PubMed Central  Google Scholar 

  99. Koyner JL, Davison DL, Brasha-Mitchell E, Chalikonda DM, Arthur JM, Shaw AD, Tumlin JA, Trevino SA, Bennett MR, Kimmel PL, et al. Furosemide stress test and biomarkers for the prediction of AKI severity. J Am Soc Nephrol. 2015;26(8):2023–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Levraut J, Garcia P, Giunti C, Ichai C, Bouregba M, Ciebiera JP, Payan P, Grimaud D. The increase in CO2 production induced by NaHCO3 depends on blood albumin and hemoglobin concentrations. Intensive Care Med. 2000;26(5):558–64.

    Article  CAS  PubMed  Google Scholar 

  101. Goldsmith DJ, Forni LG, Hilton PJ. Bicarbonate therapy and intracellular acidosis. Clin Sci (Lond). 1997;93(6):593–8.

    Article  CAS  Google Scholar 

  102. Treatment of acute hyperkalaemia in adults. http://www.renal.org/docs/default-source/guidelines-resources/joint-guidelines/treatment-of-acute-hyperkalaemia-in-adults/hyperkalaemia-guideline—march-2014.pdf?sfvrsn=2.

  103. Allon M, Copkney C. Albuterol and insulin for treatment of hyperkalemia in hemodialysis patients. Kidney Int. 1990;38(5):869–72.

    Article  CAS  PubMed  Google Scholar 

  104. Lens XM, Montoliu J, Cases A, Campistol JM, Revert L. Treatment of hyperkalaemia in renal failure: salbutamol v. insulin. Nephrol Dial Transplant. 1989;4(3):228–32.

    Article  CAS  PubMed  Google Scholar 

  105. Allon M, Shanklin N. Effect of bicarbonate administration on plasma potassium in dialysis patients: interactions with insulin and albuterol. Am J Kidney Dis. 1996;28(4):508–14.

    Article  CAS  PubMed  Google Scholar 

  106. Blumberg A, Weidmann P, Shaw S, Gnadinger M. Effect of various therapeutic approaches on plasma potassium and major regulating factors in terminal renal failure. Am J Med. 1988;85(4):507–12.

    Article  CAS  PubMed  Google Scholar 

  107. Kovesdy CP. Management of hyperkalemia: an update for the internist. Am J Med. 2015;128(12):1281–7.

    Article  PubMed  Google Scholar 

  108. Amdur RL, Chawla LS, Amodeo S, Kimmel PL, Palant CE. Outcomes following diagnosis of acute renal failure in U.S. veterans: focus on acute tubular necrosis. Kidney Int. 2009;76(10):1089–97.

    Article  PubMed  Google Scholar 

  109. Chawla LS, Kimmel PL. Acute kidney injury and chronic kidney disease: an integrated clinical syndrome. Kidney Int. 2012;82(5):516–24.

    Article  PubMed  Google Scholar 

  110. Ishani A, Xue JL, Himmelfarb J, Eggers PW, Kimmel PL, Molitoris BA, Collins AJ. Acute kidney injury increases risk of ESRD among elderly. J Am Soc Nephrol. 2009;20(1):223–8.

    Article  PubMed  PubMed Central  Google Scholar 

  111. Bucaloiu ID, Kirchner HL, Norfolk ER, Hartle JE 2nd, Perkins RM. Increased risk of death and de novo chronic kidney disease following reversible acute kidney injury. Kidney Int. 2012;81(5):477–85.

    Article  PubMed  Google Scholar 

  112. Mammen C, Al Abbas A, Skippen P, Nadel H, Levine D, Collet JP, Matsell DG. Long-term risk of CKD in children surviving episodes of acute kidney injury in the intensive care unit: a prospective cohort study. Am J Kidney Dis. 2012;59(4):523–30.

    Article  PubMed  Google Scholar 

  113. Wu VC, Wu CH, Huang TM, Wang CY, Lai CF, Shiao CC, Chang CH, Lin SL, Chen YY, Chen YM, et al. Long-term risk of coronary events after AKI. J Am Soc Nephrol. 2014;25(3):595–605.

    Article  PubMed  PubMed Central  Google Scholar 

  114. Chawla LS, Amdur RL, Shaw AD, Faselis C, Palant CE, Kimmel PL. Association between AKI and long-term renal and cardiovascular outcomes in United States veterans. Clin J Am Soc Nephrol. 2014;9(3):448–56.

    Article  PubMed  Google Scholar 

  115. Harel Z, Wald R, Bargman JM, Mamdani M, Etchells E, Garg AX, Ray JG, Luo J, Li P, Quinn RR, et al. Nephrologist follow-up improves all-cause mortality of severe acute kidney injury survivors. Kidney Int. 2013;83(5):901–8.

    Article  PubMed  Google Scholar 

  116. Siew ED, Peterson JF, Eden SK, Hung AM, Speroff T, Ikizler TA, Matheny ME. Outpatient nephrology referral rates after acute kidney injury. J Am Soc Nephrol. 2012;23(2):305–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Kirwan CJ, Blunden MJ, Dobbie H, James A, Nedungadi A, Prowle JR. Critically ill patients requiring acute renal replacement therapy are at an increased risk of long-term renal dysfunction, but rarely receive specialist nephrology follow-up. Nephron. 2015;129(3):164–70.

    Article  CAS  PubMed  Google Scholar 

  118. Kidney Disease. Improving Global Outcomes (KDIGO) Acute Kidney Injury Work Group: KDIGO clinical practice guideline for acute kidney injury. Kidney Int Suppl. 2012;2:1–138.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John R. Prowle .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Prowle, J.R. (2018). Non-dialytic Management of Acute Kidney Injury. In: Waikar, S., Murray, P., Singh, A. (eds) Core Concepts in Acute Kidney Injury. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-8628-6_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8628-6_19

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-8626-2

  • Online ISBN: 978-1-4939-8628-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics