Skip to main content

Structure Theorems for Greenberg Schemes

  • Chapter
  • First Online:
Book cover Motivic Integration

Part of the book series: Progress in Mathematics ((PM,volume 325))

  • 1726 Accesses

Abstract

Throughout this chapter, we denote by R a complete discrete valuation ring with maximal ideal \(\mathfrak{m}\) and residue field k. For every integer n⩾0, we set \(R_{n} = R/\mathfrak{m}^{n+1}\).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In (ÉGA II) the terminology fibré vectoriel (vector bundle) is used instead, but we prefer to reserve this name for the case where \(\mathcal{E}\) is locally free, as is common in the literature.

Bibliography

  • M. Artin (1969), Algebraic approximation of structures over complete local rings. Inst. Hautes Études Sci. Publ. Math. 36, 23–58

    Article  MathSciNet  Google Scholar 

  • V.G. Berkovich (1993), Étale cohomology for non-Archimedean analytic spaces. Publ. Math. Inst. Hautes Études Sci. 78, 5–161

    Article  Google Scholar 

  • S. Bosch, W. Lütkebohmert, M. Raynaud (1995), Formal and rigid geometry. III. The relative maximum principle. Math. Ann. 302(1), 1–29

    MATH  Google Scholar 

  • J. Denef, F. Loeser (1999), Germs of arcs on singular algebraic varieties and motivic integration. Invent. Math. 135(1), 201–232

    Article  MathSciNet  Google Scholar 

  • A. Ducros (2009), Les espaces de Berkovich sont excellents. Ann. Inst. Fourier (Grenoble) 59(4), 1443–1552

    Article  MathSciNet  Google Scholar 

  • A. Ducros (2018), Families of Berkovich spaces. arXiv:1107.4259v5

    Google Scholar 

  • D. Eisenbud (1995), Commutative Algebra with a View Towards Algebraic Geometry. Graduate Texts in Mathematics, vol. 150 (Springer, Berlin)

    Book  Google Scholar 

  • R. Elkik (1973/1974), Solutions d’équations à coefficients dans un anneau hensélien. Ann. Sci. École Norm. Sup. 6, 553–603

    Article  MathSciNet  Google Scholar 

  • M.J. Greenberg (1966), Rational points in Henselian discrete valuation rings. Inst. Hautes Études Sci. Publ. Math. 31, 59–64

    Article  MathSciNet  Google Scholar 

  • A. Grothendieck, J. Dieudonné (1961a), Éléments de géométrie algébrique. II. Étude globale élémentaire de quelques classes de morphismes. Publ. Math. Inst. Hautes Études Sci. 8, 5–222. Quoted as (ÉGA II)

    Google Scholar 

  • S. Ishii, A.J. Reguera (2013), Singularities with the highest Mather minimal log discrepancy. Math. Z. 275(3–4), 1255–1274

    Article  MathSciNet  Google Scholar 

  • M. Kontsevich (1995), Motivic integration. Lecture at Orsay. http://www.lama.univ-savoie.fr/~raibaut/Kontsevich-MotIntNotes.pdf

  • E. Looijenga (2002), Motivic measures. Astérisque, 276, 267–297. Séminaire Bourbaki, vols. 1999/2000

    Google Scholar 

  • J.S. Milne (1980), Étale Cohomology. Mathematical Notes, vol. 33 (Princeton University Press, Princeton)

    Google Scholar 

  • D. Popescu (1986), General Néron desingularization and approximation. Nagoya Math. J. 104, 85–115

    Article  MathSciNet  Google Scholar 

  • D. Popescu (2000), Artin Approximation. Handbook of Algebra, vol. 2 (North-Holland, Amsterdam), pp. 321–356

    Chapter  Google Scholar 

  • J. Sebag (2004a), Intégration motivique sur les schémas formels. Bull. Soc. Math. Fr. 132(1), 1–54

    Article  MathSciNet  Google Scholar 

  • M. Spivakovsky (1999), A new proof of D. Popescu’s theorem on smoothing of ring homomorphisms. J. Am. Math. Soc. 12(2), 381–444

    Article  MathSciNet  Google Scholar 

  • R.G. Swan (1998), Néron-Popescu desingularization, in Algebra and Geometry (Taipei, 1995). Lectures on Algebraic Geometry, vol. 2 (International Press, Cambridge), pp. 135–192

    Google Scholar 

  • L.A. Tarrío, A.J. López, M.P. Rodríguez (2007), Infinitesimal lifting and Jacobi criterion for smoothness on formal schemes. Commun. Algebra 35(4), 1341–1367

    Article  MathSciNet  Google Scholar 

  • B. Teissier (1995), Résultats récents sur l’approximation des morphismes en algèbre commutative (d’après André, Artin, Popescu et Spivakovsky). Astérisque, 227, pp. Exp. No. 784, 4, 259–282. Séminaire Bourbaki, vols. 1993/1994

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chambert-Loir, A., Nicaise, J., Sebag, J. (2018). Structure Theorems for Greenberg Schemes. In: Motivic Integration. Progress in Mathematics, vol 325. Birkhäuser, New York, NY. https://doi.org/10.1007/978-1-4939-7887-8_5

Download citation

Publish with us

Policies and ethics