We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

The Grothendieck Ring of Varieties | SpringerLink

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Skip to main content

The Grothendieck Ring of Varieties

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

  • First Online:
Motivic Integration

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

  • 2158 Accesses

Abstract

In this chapter, we define the Grothendieck ring of varieties over an arbitrary base scheme. This is a ring of virtual varieties up to cut-and-paste relations; it takes a central place in the theory of motivic integration, because (after a suitable localization and/or completion) it serves as the ring where motivic integrals take their values. After the basic definitions in section 1, we define the notion of motivic measures, which are ring morphisms from the Grothendieck ring to other rings with a more explicit structure. Motivic measures are fundamental both for the understanding of Grothendieck ring itself and for extracting geometric information from its elements. Among the motivic measures, we develop in sections 3 and 5 the cohomological and motivic realizations. In sections 5 and 6, we study the main structure theorems for the Grothendieck ring over a field of characteristic zero: the theorems of Bittner and Larsen-Lunts. Bittner’s theorem gives a presentation of the Grothendieck ring in terms of smooth projective varieties and blow-up relations, which is quite useful to construct motivic measures. The theorem of Larsen and Lunts relates equalities in the Grothendieck ring to the notion of stable birational equivalence. In section 4 we discuss a process of dimensional completion for the Grothendieck ring of varieties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    (…) let L(k) be the “K group” defined by schemes of finite type over k together with relations coming from decomposition into pieces (…)

  2. 2.

    The spreading-out techniques of §2.5 will allow to relax this hypothesis somewhat, see example 2.5.6.

  3. 3.

    It is not necessary to recall here the precise definition of an excellent scheme and we refer to (ÉGA IV4, §7) and to Raynaud and Laszlo ( 2014 ) for an introduction. In fact, the following examples will suffice for our purposes: fields are excellent, as well as Z and, more generally, Dedekind rings whose field of fractions has characteristic zero; complete noetherian local rings are excellent; moreover, localizations of schemes of finite type over a (quasi-)excellent scheme are (quasi-)excellent.

  4. 4.

    Recall that we only consider Q-Hodge structures.

  5. 5.

    Also called “constant tordus”

  6. 6.

    We thank B. Le Stum for having communicated us this proof.

  7. 7.

    The English word motive has two meanings, either a factor inducing to act in a certain way or, especially in art, a distinctive feature, a structural principle, a pattern. Grothendieck referred to the latter meaning.

  8. 8.

    “ […] one obtains a natural homomorphism

    $$\displaystyle{\mathrm{L}(k) \rightarrow \mathrm{ M}(k),}$$

    which is actually a homomorphism of rings […]. The general question that can be asked is to know what one can say on this homomorphism, is it far from being bijective? […]”

  9. 9.

    This proof is due to J. Kollár and E. Szabó, see the appendix of Reichstein and Youssin (2000).

Bibliography

  • D. Abramovich, K. Karu, K. Matsuki, J. Włodarczyk (2002), Torification and factorization of birational maps. J. Am. Math. Soc. 15(3), 531–572

    MathSciNet  MATH  Google Scholar 

  • Y. André (2004), Une introduction aux motifs (motifs purs, motifs mixtes, périodes). Panoramas et Synthèses 17 (Soc. Math. France)

    Google Scholar 

  • D. Arapura, S.-J. Kang (2006), Coniveau and the Grothendieck group of varieties. Mich. Math. J. 54(3), 611–622

    MathSciNet  MATH  Google Scholar 

  • J. Ayoub (2007a/2008), Les six opérations de Grothendieck et le formalisme des cycles évanescents dans le monde motivique. I. Astérisque 314, x+466 pp.

    Google Scholar 

  • J. Ayoub (2007b/2008), Les six opérations de Grothendieck et le formalisme des cycles évanescents dans le monde motivique. II. Astérisque 315, vi+364 pp.

    Google Scholar 

  • A.A. Beĭlinson (1987), On the derived category of perverse sheaves, in K-Theory, Arithmetic and Geometry (Moscow, 1984–1986). Lecture Notes in Mathematics, vol. 1289 (Springer, Berlin), pp. 27–41

    Google Scholar 

  • A.A. Beĭlinson, J. Bernstein, P. Deligne (1982), Faisceaux pervers. Analysis and topology on singular spaces, I (Luminy, 1981), Astérisque, vol. 100 (Soc. Math.), pp. 5–171

    Google Scholar 

  • P. Berthelot (1974), Cohomologie cristalline des schémas de caractéristique p > 0. Lecture Notes in Mathematics, vol. 407 (Springer, Berlin)

    Google Scholar 

  • P. Berthelot (1986), Géométrie rigide et cohomologie des variétés algébriques de caractéristique p. Mém. Soc. Math. France, vol. 23, pp. 7–32. Introductions aux cohomologies p-adiques (Luminy, 1984)

    Google Scholar 

  • P. Berthelot (1996), Cohomologie rigide et cohomologie rigide à supports propres. Première partie. Prépublication, IRMAR, Université Rennes 1

    Google Scholar 

  • P. Berthelot, A. Ogus (1983), F-isocrystals and de Rham cohomology. I. Invent. Math. 72(2), 159–199

    MathSciNet  MATH  Google Scholar 

  • B. Bhatt, P. Scholze (2015), The pro-étale topology for schemes, De la géométrie algébrique aux formes automorphes, I: Une collection d’articles en l’honneur du soixantième anniversaire de Gérard Laumon, ed. by J.-B. Bost, P. Boyer, A. Genestier, L. Lafforgue, S. Lysenko, S. Morel, B.C. Ngô, vol. 369 (American Mathematical Society, Providence), pp. 99–201

    Google Scholar 

  • E. Bilgin (2014), On the classes of hypersurfaces of low degree in the Grothendieck ring of varieties. Int. Math. Res. Not. 16, 4534–4546. http://dx.doi.org/10.1093/imrn/rnt089. arXiv:1112.2131

    MathSciNet  MATH  Google Scholar 

  • C. Birkenhake, H. Lange (2004), Complex Abelian Varieties, 2nd edn. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 302 (Springer, Berlin)

    Google Scholar 

  • F. Bittner (2004), The universal Euler characteristic for varieties of characteristic zero. Compos. Math. 140(4), 1011–1032

    MathSciNet  MATH  Google Scholar 

  • M.V. Bondarko (2009), Differential graded motives: weight complex, weight filtrations and spectral sequences for realizations; Voevodsky versus Hanamura. J. Inst. Math. Jussieu 8(1), 39–97

    MathSciNet  MATH  Google Scholar 

  • A. Borel (1991), Linear Algebraic Groups, 2nd edn. (Springer, New York)

    Book  Google Scholar 

  • L. Borisov (2014), Class of the affine line is a zero divisor in the grothendieck ring. arXiv:1412.6194

    Google Scholar 

  • L. Borisov, A. Căldăraru (2009), The Pfaffian-Grassmannian derived equivalence. J. Algebraic Geom. 18(2), 201–222

    MathSciNet  MATH  Google Scholar 

  • B. Chiarellotto (1998), Weights in rigid cohomology. applications to unipotent F-isocrystals. Ann. Sci. École Norm. Sup. 31(5), 683–715

    MathSciNet  MATH  Google Scholar 

  • B. Chiarellotto, B. Le Stum (1999), Pentes en cohomologie rigide et F-isocristaux unipotents. Manuscripta Math. 100(4), 455–468

    MathSciNet  MATH  Google Scholar 

  • B. Chiarellotto, B. Le Stum (2002), A comparison theorem for weights. J. Reine Angew. Math. 546, 159–176

    MathSciNet  MATH  Google Scholar 

  • P. Colmez, J.-P. Serre (eds.) (2001), Correspondance Grothendieck-Serre. Documents Mathématiques (Paris) [Mathematical Documents (Paris)], 2 (Société Mathématique de France, Paris)

    Google Scholar 

  • P. Deligne (1971a), Théorie de Hodge. I. Actes du Congrès International des Mathématiciens (Nice, 1970), Tome 1 (Gauthier-Villars, Paris), pp. 425–430

    Google Scholar 

  • P. Deligne (1971b), Théorie de Hodge II. Publ. Math. Inst. Hautes Études Sci. 40, 5–57

    MATH  Google Scholar 

  • P. Deligne (1974a), La conjecture de Weil. I. Inst. Hautes Études Sci. Publ. Math., 43, 273–307

    MathSciNet  MATH  Google Scholar 

  • P. Deligne (1974b), Théorie de Hodge. III. Inst. Hautes Études Sci. Publ. Math. 44, 5–77

    MATH  Google Scholar 

  • P. Deligne (1977), Cohomologie étale — SGA IV \(\frac{1} {2}\). Lecture Notes in Mathematics, vol. 569 (Springer, Berlin). Avec la collaboration de J.-F. Boutot, A. Grothendieck, L. Illusie et J.-L. Verdier

    Google Scholar 

  • P. Deligne (1980), La conjecture de Weil, II. Publ. Math. Inst. Hautes Études Sci. 52, 137–252

    MathSciNet  MATH  Google Scholar 

  • M. Demazure (1969–1970), Motifs des variétés algébriques. Séminaire Bourbaki 12, 19–38

    Google Scholar 

  • M. Demazure, P. Gabriel (1970), Groupes algébriques. Tome I: Géométrie algébrique, généralités, groupes commutatifs (North-Holland Publishing Company, Amsterdam)

    MATH  Google Scholar 

  • T. Ekedahl (1983), Sur le groupe fondamental d’une variété unirationnelle. C. R. Acad. Sci. Paris Sér. I Math. 297(12), 627–629

    MathSciNet  MATH  Google Scholar 

  • T. Ekedahl (1990), On the adic formalism, in The Grothendieck Festschrift, Volume II. Progress in Mathematics, vol. 87 (Birkhäuser, Boston), pp. 197–218

    Google Scholar 

  • T. Ekedahl (2009), The Grothendieck group of algebraic stacks. arXiv:0903.3143

    Google Scholar 

  • T. Ekedahl (2010), Is the Grothendieck ring of varieties reduced? MathOverflow. http://mathoverflow.net/questions/37737/is-the-grothendieck-ring-of-varieties-reduced

  • H. Esnault (2003), Varieties over a finite field with trivial Chow group of 0-cycles have a rational point. Invent. Math. 151(1), 187–191. arXiv:math.AG/0207022

    MathSciNet  MATH  Google Scholar 

  • J.-Y. Étesse, B. Le Stum (1993), Fonctions L associées aux F-isocristaux surconvergents. I. Interprétation cohomologique. Math. Ann. 296(3), 557–576

    MATH  Google Scholar 

  • E. Freitag, R. Kiehl (1988), Étale cohomology and the Weil Conjecture. Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 13 (Springer, Berlin). Translated from the German by Betty S. Waterhouse and William C. Waterhouse, With an historical introduction by J.A. Dieudonné

    Google Scholar 

  • W. Fulton (1998), Intersection Theory, 2nd edn. (Springer, Berlin)

    Book  Google Scholar 

  • P. Gabriel, M. Zisman (1967), Calculus of Fractions and Homotopy Theory. Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 35 (Springer, New York)

    Google Scholar 

  • H. Gillet, C. Soulé (1996), Descent, motives and K-theory. J. Reine Angew. Math. 478, 127–176

    MathSciNet  MATH  Google Scholar 

  • H. Gillet, C. Soulé (2009), Motivic weight complexes for arithmetic varieties. J. Algebra 322(9), 3088–3141

    MathSciNet  MATH  Google Scholar 

  • M. Gromov (1999), Endomorphisms of symbolic algebraic varieties. J. Eur. Math. Soc. 1(2), 109–197

    MathSciNet  MATH  Google Scholar 

  • A. Grothendieck (1968), Crystals and the de Rham cohomology of schemes, in Dix exposés sur la cohomologie des schémas. Advanced Studies in Pure Mathematics (North-Holland, Amsterdam), pp. 306–358

    Google Scholar 

  • A. Grothendieck, J. Dieudonné (1960), Éléments de géométrie algébrique. I. Le langage des schémas. Publ. Math. Inst. Hautes Études Sci. 4, 228. Quoted as (ÉGA I)

    Article  MATH  Google Scholar 

  • A. Grothendieck (1972–1973), Cohomologie ℓ-adique et fonctions L. Lecture Notes in Mathematics, vol. 589 (Springer, Berlin). Quoted as (SGA V)

    Google Scholar 

  • A. Grothendieck, M. Artin, J.-L. Verdier (1972–1973a), Théorie des topos et cohomologie étale des schémas. Lecture Notes in Mathematics, vols. 269–270–305 (Springer, Berlin). Quoted as (SGA IV)

    Google Scholar 

  • F. Guillén, V. Navarro Aznar (2002), Un critère d’extension des foncteurs définis sur les schémas lisses. Publ. Math. Inst. Hautes Études Sci. 95, 1–91

    MATH  Google Scholar 

  • V. Guletskiĭ, C. Pedrini (2002), The Chow motive of the Godeaux surface, in Algebraic Geometry (de Gruyter, Berlin), pp. 179–195

    Google Scholar 

  • H. Hironaka (1964), Resolution of singularities of an algebraic variety over a field of characteristic zero. I, II. Ann. Math. (2) 79, 109–203, 205–326

    Article  MathSciNet  MATH  Google Scholar 

  • R. Hotta, K. Takeuchi, T. Tanisaki (2008), D-Modules, Perverse Sheaves, and Representation Theory. Progress in Mathematics, vol. 236 (Birkhäuser Boston, Inc., Boston) Translated from the 1995 Japanese edition by Takeuchi

    Google Scholar 

  • A. Huber (1995), Mixed Motives and Their Realization in Derived Categories. Lecture Notes in Mathematics, vol. 1604 (Springer, Berlin)

    Google Scholar 

  • A. Huber (1997), Mixed perverse sheaves for schemes over number fields. Compos. Math. 108(1), 107–121

    MathSciNet  MATH  Google Scholar 

  • L. Illusie, Y. Laszlo, F. Orgogozo (eds.) (2014), Travaux de Gabber sur l’uniformisation locale et la cohomologie étale des schémas quasi-excellents, Astérisque, vols. 363–364, Société Mathématique de France, Paris. Séminaire à l’École polytechnique 2006–2008. With the collaboration of Frédéric Déglise, Alban Moreau, Vincent Pilloni, Michel Raynaud, Joël Riou, Benoît Stroh, Michael Temkin and Weizhe Zheng.

    Google Scholar 

  • A. Ito, M. Miura, S. Okawa, K. Ueda (2016), The class of the affine line is a zero divisor in the grothendieck ring: via g2-Grassmannians. arXiv:1606.04210

    Google Scholar 

  • F. Ivorra, J. Sebag (2012), Géométrie algébrique par morceaux, K-équivalence et motifs. Enseign. Math. (2), 58, 375–403

    MathSciNet  MATH  Google Scholar 

  • F. Ivorra, J. Sebag (2013), Nearby motives and motivic nearby cycles. Selecta Math. (N.S.) 19(4), 879–902

    MathSciNet  MATH  Google Scholar 

  • U. Jannsen (1992), Motives, numerical equivalence, and semi-simplicity. Invent. Math. 107, 447–452

    MathSciNet  MATH  Google Scholar 

  • N.M. Katz (1979), Slope filtration of F-crystals. Journées de Géométrie algébrique de Rennes Astérisque 63, pp. 113–164, Soc. Math. France

    Google Scholar 

  • N.M. Katz, W. Messing (1974), Some consequences of the Riemann hypothesis for varieties over finite fields. Invent. Math. 23, 73–77

    MathSciNet  MATH  Google Scholar 

  • S.-I. Kimura (2005), Chow groups are finite dimensional, in some sense. Math. Ann. 331(1), 173–201

    MathSciNet  MATH  Google Scholar 

  • S.L. Kleiman (1968), Algebraic cycles and the Weil conjectures. Dix exposés sur la cohomologie des schémas. Advanced Studies in Pure Mathematics, vol. 3 (North-Holland, Amsterdam), pp. 359–386

    Google Scholar 

  • J. Kollár (1997), Quotient spaces modulo algebraic groups. Ann. Math. 145(1), 33–79

    MathSciNet  MATH  Google Scholar 

  • J. Kollár (1989), Flops. Nagoya Math. J. 113, 15–36

    MathSciNet  MATH  Google Scholar 

  • J. Krajíček, T. Scanlon (2000), Combinatorics with definable sets: Euler characteristics and Grothendieck rings. Bull. Symb. Log. 6(3), 311–330

    MathSciNet  MATH  Google Scholar 

  • M. Larsen, V.A. Lunts (2003), Motivic measures and stable birational geometry. Mosc. Math. J. 3(1), 85–95, 259. arXiv:math.AG/0110255

    MathSciNet  MATH  Google Scholar 

  • B. Le Stum (2007), Rigid Cohomology. Cambridge Tracts in Mathematics, vol. 172 (Cambridge University Press, Cambridge)

    Google Scholar 

  • Q. Liu, J. Sebag (2010), The Grothendieck ring of varieties and piecewise isomorphisms. Math. Z. 265(2), 321–342

    MathSciNet  MATH  Google Scholar 

  • S. Mac Lane (1998), Categories for the Working Mathematician, 2nd edn. Graduate Texts in Mathematics, vol. 5 (Springer, New York)

    Google Scholar 

  • J.I. Manin (1968), Correspondences, motifs and monoidal transformations. Mat. Sb. (N.S.) 77(119), 475–507

    Google Scholar 

  • N. Martin (2016), The class of the affine line is a zero divisor in the Grothendieck ring: an improvement. C. R. Math. Acad. Sci. Paris 354(9), 936–939

    MathSciNet  MATH  Google Scholar 

  • P. Monsky, G. Washnitzer (1968), Formal cohomology I. Ann. Math. 88, 181–217

    MathSciNet  MATH  Google Scholar 

  • S. Morel (2012), Complextes mixtes sur un schéma de type fini sur Q. https://web.math.princeton.edu/~smorel/sur_Q.pdf

  • J.P. Murre, J. Nagel, C.A.M. Peters (2013), Lectures on the Theory of Pure Motives. University Lecture Series, vol. 61 (American Mathematical Society, Providence)

    MATH  Google Scholar 

  • Y. Nakkajima (2012), Weight filtration and slope filtration on the rigid cohomology of a variety in characteristic p > 0, in Mém. Soc. Math. France, vols. 130–131 (American Mathematical Society, Providence)

    MATH  Google Scholar 

  • N. Naumann (2007), Algebraic independence in the Grothendieck ring of varieties. Trans. Am. Math. Soc. 359(4), 1653–1683 [electronic]

    MathSciNet  MATH  Google Scholar 

  • A. Neeman (2001), Triangulated Categories. Annals of Mathematics Studies, vol. 148 (Princeton University Press, Princeton)

    Google Scholar 

  • J. Nicaise (2011a), Motivic invariants of algebraic tori. Proc. Am. Math. Soc. 139(4), 1163–1174

    MathSciNet  MATH  Google Scholar 

  • J. Nicaise (2011b), A trace formula for varieties over a discretely valued field. J. Reine Angew. Math. 650, 193–238

    MathSciNet  MATH  Google Scholar 

  • J. Nicaise, J. Sebag (2011), The Grothendieck ring of varieties, in Motivic Integration and its Interactions with Model Theory and Non-Archimedean Geometry, Volume I. London Mathematical Society. Lecture Note Series, vol. 383 (Cambridge University Press, Cambridge), pp. 145–188

    Google Scholar 

  • M.V. Nori (2002), Constructible sheaves, in Algebra, Arithmetic and Geometry, Parts I, II (Mumbai, 2000). Tata Institute of Fundamental Research Studies in Mathematics, vol. 16 (Tata Institute of Fundamental Research, Bombay), pp. 471–491

    Google Scholar 

  • J.-P. Olivier (1968a), Anneaux absolument plats universels et épimorphismes à buts réduits. Séminaire Samuel. Algèbre commutative (1967/1968), Exposé No. 6. http://www.numdam.org/item?id=SAC_1967-1968__2__A6_0

  • J.-P. Olivier (1968b), Le foncteur T. globalisation du foncteur t. Séminaire Samuel. Algèbre commutative (1967/1968), Exposé No. 9. http://www.numdam.org/item?id=SAC_1967-1968__2__A9_0

  • F. Orgogozo (2014), Exposé XIII. Le théorème de finitude, in Travaux de Gabber sur l’uniformisation locale et la cohomologie étale des schémas quasi-excellents, ed. by L. Illusie, Y. Laszlo, F. Orgogozo. Astérisque, vols. 363–364 (Société Mathématique de France, Paris), pp. 261–275. Séminaire à l’École polytechnique 2006–2008. With the collaboration of Frédéric Déglise, Alban Moreau, Vincent Pilloni, Michel Raynaud, Joël Riou, Benoît Stroh, Michael Temkin and Weizhe Zheng

    Google Scholar 

  • P. O’Sullivan (2005), The structure of certain rigid tensor categories. C. R. Math. Acad. Sci. Paris 340(8), 557–562

    MathSciNet  MATH  Google Scholar 

  • C.A.M. Peters, J.H.M. Steenbrink (2008), Mixed Hodge structures, in Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 52 (Springer, Berlin)

    Google Scholar 

  • B. Poonen (2002), The Grothendieck ring of varieties is not a domain. Math. Res. Lett. 9(4), 493–497

    MathSciNet  MATH  Google Scholar 

  • M. Raynaud, Y. Laszlo (2014), Exposé I. Anneaux excellents, in Travaux de Gabber sur l’uniformisation locale et la cohomologie étale des schémas quasi-excellents, ed. by L. Illusie, Y. Laszlo, F. Orgogozo Astérisque, vols. 363–364. Société Mathématique de France, Paris, pp. 1–19 Séminaire à l’École polytechnique 2006–2008. With the collaboration of Frédéric Déglise, Alban Moreau, Vincent Pilloni, Michel Raynaud, Joël Riou, Benoît Stroh, Michael Temkin and Weizhe Zheng

    Google Scholar 

  • Z. Reichstein, B. Youssin (2000), Essential dimensions of algebraic groups and a resolution theorem for G-varieties. Can. J. Math. 52(5), 1018–1056. With an appendix by János Kollár and Endre Szabó

    MathSciNet  MATH  Google Scholar 

  • J. Riou (2014), Exposé XVII. Dualité, in Travaux de Gabber sur l’uniformisation locale et la cohomologie étale des schémas quasi-excellents, ed. by L. Illusie, Y. Laszlo, F. Orgogozo Astérisque, vols. 363–364, Société Mathématique de France, Paris, pp. 351–453. Séminaire à l’École polytechnique 2006–2008. With the collaboration of Frédéric Déglise, Alban Moreau, Vincent Pilloni, Michel Raynaud, Joël Riou, Benoît Stroh, Michael Temkin and Weizhe Zheng

    Google Scholar 

  • E.A. Rødland (2000), The Pfaffian Calabi-Yau, its mirror, and their link to the Grassmannian G(2, 7). Compos. Math. 122(2), 135–149

    Google Scholar 

  • M. Saito (1988/1989), Modules de Hodge polarisables. Publ. Res. Inst. Math. Sci. 24(6), 849–995

    MathSciNet  MATH  Google Scholar 

  • M. Saito (1990), Mixed Hodge modules. Publ. Res. Inst. Math. Sci. 26(2), 221–333

    MathSciNet  MATH  Google Scholar 

  • J. Schürmann (2011), Characteristic classes of mixed Hodge modules, in Topology of Stratified Spaces. Mathematical Sciences Research Institute Publications, vol. 58 (Cambridge University Press, Cambridge), pp. 419–470

    Google Scholar 

  • J. Sebag (2010a), Variations on a question of Larsen and Lunts. Proc. Am. Math. Soc. 138(4), 1231–1242

    MathSciNet  MATH  Google Scholar 

  • J.-P. Serre (2012), Lectures on NX(p). Chapman & Hall/CRC Research Notes in Mathematics, vol. 11 (CRC Press, Boca Raton)

    Google Scholar 

  • T. Shioda (1977), Some remarks on Abelian varieties. J. Fac. Sci. Univ. Tokyo Sect. IA Math. 24(1), 11–21

    MathSciNet  MATH  Google Scholar 

  • J.-L. Verdier (1996/1997), Des catégories dérivées des catégories abéliennes. Astérisque 239, xii+253 pp. With a preface by Luc Illusie, Edited and with a note by Georges Maltsiniotis

    Google Scholar 

  • C.A. Weibel (2013), The K-Book: An Introduction to Algebraic K-Theory. Graduate Studies in Mathematics, vol. 145 (American Mathematical Society, Providence)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chambert-Loir, A., Nicaise, J., Sebag, J. (2018). The Grothendieck Ring of Varieties. In: Motivic Integration. Progress in Mathematics, vol 325. Birkhäuser, New York, NY. https://doi.org/10.1007/978-1-4939-7887-8_2

Download citation

Publish with us

Policies and ethics