Skip to main content

Approximation by Entire Functions in the Construction of Order-Isomorphisms and Large Cross-Sections

  • Chapter
  • First Online:
New Trends in Approximation Theory

Part of the book series: Fields Institute Communications ((FIC,volume 81))

  • 486 Accesses

Abstract

A theorem of Hoischen states that given a positive continuous function \(\varepsilon :\mathbb {R}^t\to \mathbb {R}\), a sequence U 1 ⊆ U 2 ⊆… of open sets covering \(\mathbb {R}^t\) and a closed discrete set \(T\subseteq \mathbb {R}^t\), any C function \(g:\mathbb {R}^t\to \mathbb {R}\) can be approximated by an entire function f so that for k = 1, 2, …, for all \(x\in \mathbb {R}^t\setminus U_k\) and for each multi-index α such that |α|≤ k,

  1. (a)

    |(D α f)(x) − (D α g)(x)| < ε(x);

  2. (b)

    (D α f)(x) = (D α g)(x) if x ∈ T.

This theorem has been useful in helping to analyze the existence of entire functions restricting to order-isomorphisms of everywhere non-meager subsets of \(\mathbb {R}\), analogous to the Barth-Schneider theorem, which gives entire functions restricting to order-isomorphisms of countable dense sets, and the existence of entire functions f determining cross-sections f ∩ A through everywhere non-meager subsets A of \(\mathbb {R}^{t+1}\cong \mathbb {R}^t\times \mathbb {R}\) whose projection \(\{x\in \mathbb {R}^t:(x,f(x))\in A\}\) onto \(\mathbb {R}^t\) is everywhere non-meager, analogous to the Kuratowski-Ulam theorem which gives for residual sets A in \(\mathbb {R}^{t+1}\), points \(c\in \mathbb {R}\) so that the horizontal section of A determined by c has a residual projection \(\{x\in \mathbb {R}^t:(x,c)\in A\}\) in \(\mathbb {R}^t\). The insights gained from this work have also led to variations on the Hoischen theorem that incorporate the ability to require the values of the derivatives on a countable set to belong to given dense sets or to choose the approximating function so that the graphs of its derivatives cut a small section through a given null set or a given meager set. We discuss these results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The term is due to Lebesgue [50, p. 185] who applied it inside a “domain” D of \(\mathbb {R}^n\). There are some problems with his definition associated primarily with the meaning of the word domain as explained on pp. 143–144. If we interpret domain as meaning “open domain” then Lebesgue’s definition of “on D, A is everywhere non-meager in E” is equivalent to saying that as long as D ∩ E ≠ ∅ then A ∩ D is everywhere non-meager in E ∩ D in the sense given here. If we interpret domain as meaning “finite non-degenerate domain” (these are images of closed balls under homeomorphisms of \(\mathbb {R}^t\)), which is more in keeping with the suggestion on page 144, then domains D with Lebesgue’s property do not exist when A = E is a perfect nowhere dense set, contrary to his claim on p. 185.

  2. 2.

    Write \(U=\bigcup _{i=1}^\infty V_i\), where V 1 = ∅, the sets V i are open and bounded, and cl V i  ⊆ V i+1. Then replace the sequence U 1, U 2, … by a sequence of the form V 1, …, V 1, V 2, …, V 2, …, where V 1 is used as the nth term until the first n such that V 2 ⊆ U n (which exists because cl V 2 is a compact subset of U). Then V 2 is the nth term from that point until the first n such that V 3 ⊆ U n , and so on. Finally, modify this sequence by replacing each constant block V i , …, V i by a sequence of the form \(V_i^k,\dots ,V_i^{k+m},V_i\), where \(V_i^j=\{x:d(x,V_i^c)>1/j\}\), starting with k large enough so that \(\operatorname {cl} V_{i-1}\subseteq V^k_i\). Note that \(\operatorname {cl} V_i^k\subseteq \{x:d(x,V_i^c)\geq 1/k\}\subseteq V_i^{k+1}\).

  3. 3.

    The W is for Whitney of course.

  4. 4.

    If we take a , \(\ell \in {\mathbb Z}\) so lim→− a  = a, lim a  = b, then on each [a , a +1] only finitely many values of i need to be considered and the corresponding continuous functions given by the right-hand side of the inequality have a common lower bound δ  > 0 on this interval, so \(\hat {{\varepsilon }}\) can be taken, for example, to be a suitable continuous piecewise linear modification of \(\sum _{\ell \in {\mathbb Z}}\delta _\ell \chi _{[s(a_\ell ),s(a_{\ell +1}))}\).

  5. 5.

    As pointed out in [55, Chapter 15], the proof of the Kuratowski-Ulam theorem requires only a countable π-base for Y (i.e., a countable collection of nonempty open sets so that each nonempty open sets contains one of them). In [32], a pair of spaces (X, Y ) for which the conclusion of the Kuratowski-Ulam theorem holds is called a K-U pair and conditions under which a pair of spaces is a K-U pair are studied.

  6. 6.

    This is true in any completely regular topological probability space. See [6, p. 463] for example. For metric spaces, one can simply note that for each point p ∈ X, only for countably many ε > 0 can the sphere S ε (p) = {x : d(x, p) = ε} have positive measure. Hence, the balls B ε (x) = {x : d(x, p) < ε} for which μ(S ε (p)) = 0 form a base for the topology.

  7. 7.

    Given f(x, y) continuous in y and measurable in x, let f n (x, y) agree with f(x, y) when y = k/n, \(k\in {\mathbb Z}\), and interpolate linearly between adjacent points k/n, i.e., when k/n ≤ y ≤ (k + 1)/n, f n (x, y) = f(x, k/n) + n(y − k/n)(f(x, (k + 1)/n) − f(x, k/n)). f n is a measurable function since sums and products of measurable functions are measurable. Then limn f n (x, y) = f(x, y) is measurable.

  8. 8.

    Carathéodory did not name the concept. The long form of the name, as “superpositionally measurable,” is from (the Russian edition of) [46], the short form from [63]. For more on this concept see [26, Definition 2.5.25] and the results that follow it, or the papers [36, 49].

  9. 9.

    Here we identify φ with its graph in \(\mathbb {R}^2\). Sketch of construction of A: Identify the cardinal \({\mathfrak c}\) of the continuum with the least ordinal of cardinality \({\mathfrak c}\). List the compact subsets of \(\mathbb {R}^2\) of positive measure as \((K_\alpha :\alpha <{\mathfrak c})\), and the continuous functions \(\mathbb {R}\to \mathbb {R}\) as \((\varphi _\alpha :\alpha <{\mathfrak c})\). By Fubini’s Theorem, m(E α ) > 0 where \(E_\alpha =\{x\in \mathbb {R}:m((K_\alpha )_x)>0\}\). (m denotes Lebesgue measure on \(\mathbb {R}\).) In particular, E α has cardinality \({\mathfrak c}\), and (K α ) x has cardinality \({\mathfrak c}\) for each x ∈ E α . Recursively choose points \((x_\alpha ,y_\alpha )\in \mathbb {R}^2\) so that x α  ∈ E α  ∖{x β  : β < α} and \(y_\alpha \in (K_\alpha )_{x_\alpha }\setminus (\{y_\beta :\beta <\alpha \}\cup \{\varphi _{\gamma }(x_\alpha ):{\gamma }< \alpha \})\). Then set \(A=\{(x_\alpha ,y_\alpha ):\alpha <{\mathfrak c}\}\).

  10. 10.

    Cf. Bruckner [9, Theorem 1.1]. In [20, Proposition 4] there is a direct proof that a differentiable function whose derivative is zero except at countably many points is constant. The proof works also for “less than \({\mathfrak c}\)” instead of “countably many”.

References

  1. U. Abraham, M. Rubin, S. Shelah, On the consistency of some partition theorems for continuous colorings, and the structure of 1-dense real order types. Ann. Pure Appl. Logic, 29 (1985) 123–206.

    Google Scholar 

  2. M. Balcerzak, Some remarks on sup-measurability. Real Anal. Exchange, 17 (1991–92) 597–607.

    Google Scholar 

  3. M. Balcerzak, K. Ciesielski, On the sup-measurable functions problem. Real Anal. Exchange, 23 (1997–98) 787–797.

    Google Scholar 

  4. K. F. Barth, W. J. Schneider, Entire functions mapping countable dense subsets of the reals onto each other monotonically. J. London Math. Soc. (2), 2 (1970) 620–626

    Google Scholar 

  5. T. Bartoszynski, L. Halbeisen, There are big symmetric planar sets meeting polynomials at just finitely many points. Preprint.

    Google Scholar 

  6. H. Bauer, Über die Beziehung einer abstracten Theorie des Riemann Integrals zur Theorie Radonscher Maße. Math. Z., 65 (1956) 448–482.

    Google Scholar 

  7. J. E. Baumgartner, All 1-dense sets of reals can be isomorphic. Fund. Math., 79 (1973) 101–106.

    Google Scholar 

  8. D. C. Biles, E. Schechter, Solvability of a finite or infinite system of discontinuous quasimonotone differential equations. Proc. Amer. Math. Soc., 128 (2000) 3349–3360.

    Google Scholar 

  9. A. M. Bruckner, Differentiation of real functions. Amer. Math. Soc., 1994.

    Google Scholar 

  10. M. R. Burke, Large entire cross-sections of second category sets in \({\mathbb R}^{n+1}\). Topology Appl. 154 (2007) 215–240.

    Google Scholar 

  11. M. R. Burke, Entire functions mapping uncountable dense sets of reals onto each other monotonically. Trans. Amer. Math. Soc., 361 (2009) 2871–2911.

    Google Scholar 

  12. M. R. Burke, Simultaneous approximation and interpolation of increasing functions by increasing entire functions. J. Math. Anal. Appl., 350 (2009) 845–858.

    Google Scholar 

  13. M. R. Burke, Approximation and Interpolation by Entire Functions of Several Variables. Canad. Math. Bull. 53 (2010) 11–22.

    Google Scholar 

  14. M. R. Burke, Approximation and interpolation by large entire cross-sections of second category sets in \({\mathbb R}^{n+1}\). Topology Appl., 160 (2013) 1681–1719.

    Google Scholar 

  15. M. R. Burke, Approximation and interpolation by entire functions with restriction of the values of the derivatives. Topology Appl., 213 (2016) 24–49.

    Google Scholar 

  16. M. R. Burke, A. W. Miller, Models in which every nonmeager set is nonmeager in a nowhere dense Cantor set. Canad. J. Math., 57 (2005) 1139–1154.

    Google Scholar 

  17. G. Cantor, Beiträge zur Begründung der transfiniten Mengenlehre. Math. Ann., 46 (1895) 481–512.

    Google Scholar 

  18. C. Carathéodory, Vorlesungen über Reelle Funktionen, 2nd ed., G. B. Teubner, Leipzig, 1927.

    Google Scholar 

  19. T. Carleman, Sur un théorème de Weierstrass, Ark. Mat., Ast. Fysik, 20B (1927) 1–5.

    Google Scholar 

  20. F. S. Cater, On functions differentiable on complements of countable sets. Real. Anal. Exchange, 32 (2006/2007) 527–536.

    Google Scholar 

  21. K. Ciesielski, S. Shelah, Category analogue of sup-measurability problem. J. Appl. Anal., 6 (2000) 159–172.

    Google Scholar 

  22. K. Ciesielski, T. Natkaniec, A big symmetric planar set with small category projections. Fund. Math., 178 (2003) 237–253.

    Google Scholar 

  23. E. A. Coddington, N. Levinson, Theory of Ordinary Differential Equations. McGraw-Hill, New York, 1955.

    Google Scholar 

  24. P. J. Cohen, The independence of the continuum hypothesis. Proc. Nat. Acad. Sci. U.S.A. 50 (1963) 1143–1148.

    Google Scholar 

  25. P. J. Cohen, The independence of the continuum hypothesis. II. Proc. Nat. Acad. Sci. U.S.A. 51 (1964) 105–110.

    Google Scholar 

  26. Z. Denkowski, S. Migorski, N. S. Papageorgiou, An introduction to nonlinear analysis: theory. Springer, New York, 2003.

    Google Scholar 

  27. F. Deutsch, Simultaneous interpolation and approximation in topological linear spaces. SIAM J. Appl. Math., 14 (1966) 1180–1190.

    Google Scholar 

  28. P. Erdős, Some unsolved problems. Michigan Math. J., 4 (1957) 291–300.

    Google Scholar 

  29. A. F. Filippov, Differential Equations with Discontinuous Right Hand Sides. Kluwer Acad. Publ., 1988.

    Google Scholar 

  30. W. T. Ford, J. A. Roulier, On interpolation and approximation by polynomials with monotone derivatives. J. Approximation Theory, 10 (1974) 123–130.

    Google Scholar 

  31. P. Franklin, Analytic transformations of everywhere dense point sets. Trans. Amer. Math. Soc., 27 (1925) 91–100.

    Google Scholar 

  32. D. H. Fremlin, T. Natkaniec, I. Recław, Universally Kuratowski-Ulam spaces. Fund. Math., 165 (2000) 239–247.

    Google Scholar 

  33. E. M. Frih, P. Gauthier, Approximation of a function and its derivatives by entire functions of several variables. Canad. Math. Bull. 31 (1988) 495–499.

    Google Scholar 

  34. S. G. Gal, Shape-Preserving Approximation by Real and Complex Polynomials. Birkhauser, Berlin, 2008.

    Google Scholar 

  35. P. M. Gauthier, J. Kienzle, Approximation of a function and its derivatives by entire functions. Canad. Math. Bull., 59 (2016) 87–94.

    Google Scholar 

  36. Z. Grande, La mesurabilité des fonctions de deux variables et de la superposition F(x, f(x)), Dissert. Math. CLIX (1978).

    Google Scholar 

  37. F. D. Hammer, W. Knight, Problems and Solutions: Solutions of Advanced Problems: 5955. Amer. Math. Monthly 82 (1975) 415–416.

    Article  MathSciNet  Google Scholar 

  38. L. Hoischen, A note on the approximation of continuous functions by integral functions. J. London Math. Soc., 42 (1967) 351–354.

    Article  MathSciNet  MATH  Google Scholar 

  39. L. Hoischen, Eine Verschärfung eines approximationssatzes von Carleman. J. Approximation Theory, 9 (1973) 272–277.

    Article  MathSciNet  MATH  Google Scholar 

  40. L. Hoischen, Approximation und Interpolation durch ganze Funktionen. J. Approximation Theory, 15 (1975) 116–123.

    Article  MathSciNet  MATH  Google Scholar 

  41. J. Huang, D. Marques, M. Mereb, Algebraic values of transcendental functions at algebraic points, Bull. Aust. Math. Soc. 82 (2010) 322–327.

    Article  MathSciNet  MATH  Google Scholar 

  42. T. Jech, Set Theory. Academic Press, 1978.

    Google Scholar 

  43. M. Johanis, A remark on the approximation theorems of Whitney and Carleman-Scheinberg. Comment. Math. Univ. Carolin., 56 (2015) 1–6.

    MathSciNet  MATH  Google Scholar 

  44. A. S. Kechris, Classical Descriptive Set Theory. Springer-Verlag, New York, 1995.

    Book  MATH  Google Scholar 

  45. A. B. Kharazishvili, Sup-measurable and weakly sup-measurable mappings in the theory of ordinary differential equations. J. Appl. Anal., 3 (1997) 211–223.

    MathSciNet  MATH  Google Scholar 

  46. M. A. Krasnoselskii, P. P. Zabreiko, E. I. Pustylnik, P. E. Sbolevskii, Integral operators in spaces of summable functions, Noordhoff International Publishing, Leyden, 1976.

    Book  Google Scholar 

  47. K. Kunen, Forcing and Differentiable Functions. Order, 29 (2012) 293–310.

    Google Scholar 

  48. C. Kuratowski, S. Ulam, Quelques propriétés topologiques du produit combinatoire. Fund. Math., 19 (1932) 247–251.

    Article  MATH  Google Scholar 

  49. G. Kwiecińska, On sup-measurability of multivalued functions with the (Z) property in second variable, Tatra Mt. Math. Publ., 40 (2008) 71–80.

    MathSciNet  MATH  Google Scholar 

  50. H. Lebesgue, Sur les fonctions représentables analytiquement. J. Math. (6) 1 (1905) 139–216.

    Google Scholar 

  51. K. Mahler, Lectures on transcendental numbers. Lecture Notes in Mathematics 546. Springer-Verlag 1976.

    Google Scholar 

  52. W. D. Maurer, Conformal equivalence of countable dense sets. Proc. Amer. Math. Soc., 18 (1967) 269–270.

    Article  MathSciNet  MATH  Google Scholar 

  53. Z. A. Melzak, Existence of certain analytic homeomorphisms. Canad. Math. Bull., 2 (1959) 71–75.

    Article  MathSciNet  MATH  Google Scholar 

  54. J. W. Nienhuys, J. G. F. Thiemann, On the existence of entire functions mapping countable dense sets onto each other. Nederl. Akad. Wetensch. Proc. Ser. A 79=Indag. Math., 38 (1976) 331–334.

    Google Scholar 

  55. J. C. Oxtoby, Measure and Category, 2nd ed., Springer-Verlag, 1980.

    Google Scholar 

  56. J.-P. Rosay, W. Rudin, Holomorphic maps from C n to C n. Trans. Amer. Math. Soc. 310 (1988) 47–86.

    MathSciNet  MATH  Google Scholar 

  57. A. Rosłanowski, S. Shelah, Measured Creatures, Israel J. Math., 151 (2006) 61–110.

    Article  MathSciNet  MATH  Google Scholar 

  58. H. L. Royden, Real analysis, 3rd ed. MacMillan, New York, 1988.

    MATH  Google Scholar 

  59. W. Rudin, Restrictions on the values of derivatives. Amer. Math. Monthly 84 (1977) 722–723.

    Article  MathSciNet  MATH  Google Scholar 

  60. D. Sato, S. Rankin, Entire functions mapping countable dense subsets of the reals onto each other monotonically. Bull. Austral. Math. Soc., 10 (1974) 67–70.

    Article  MathSciNet  MATH  Google Scholar 

  61. S. Shelah, Independence results. J. Symbolic Logic, 45 (1980) 563–573.

    Article  MathSciNet  MATH  Google Scholar 

  62. S. Shelah, Proper and improper forcing. 2nd ed., Springer-Verlag, Berlin, 1998.

    Book  MATH  Google Scholar 

  63. Shragin, I. V., Superposition measurability. (Russian) Izv. Vyssh. Ucebn. Zaved Matematika, 152 (1975) 82–89. I. V. Shragin, The conditions of measurability of the superpositions. Dokl. Acad. Nauk SSSR, 197 (1971) 295–298.

    Google Scholar 

  64. P. Stäckel, Über arithmetische Eigenschaften analytischer Functionen. Math. Ann. 46 (1895) 513–520.

    Article  MATH  Google Scholar 

  65. P. Stäckel, Sur quelques propriétés arithmétiques des fonctions analytiques. Comptes rendus hebdomadaires des scéances de d’Académie des sciences, 128 (1899) 727–727 and 805–808.

    Google Scholar 

  66. H. Whitney, Analytic extensions of differentiable functions defined in closed sets. Trans. Amer. Math. Soc., 36 (1934) 63–89.

    Article  MathSciNet  MATH  Google Scholar 

  67. S. Willard, General topology. Addison-Wesley, Reading MA, 1970.

    MATH  Google Scholar 

Download references

Acknowledgements

Research supported by NSERC. The author thanks the Fields Institute and the organizers of New Trends in Approximation Theory: A Conference in Memory of André Boivin, as well as the organizers of the special session on Complex Analysis and Operator Theory at the 2015 Canadian Mathematical Society Winter Meeting for their support. He also thanks Paul Gauthier for helpful discussions and correspondence.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maxim R. Burke .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Burke, M.R. (2018). Approximation by Entire Functions in the Construction of Order-Isomorphisms and Large Cross-Sections. In: Mashreghi, J., Manolaki, M., Gauthier, P. (eds) New Trends in Approximation Theory. Fields Institute Communications, vol 81. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-7543-3_3

Download citation

Publish with us

Policies and ethics