Skip to main content

Fracture Surface Energy of Soda-Lime Glass

  • Conference paper
The Role of Grain Boundaries and Surfaces in Ceramics

Part of the book series: Materials Science Research ((MSR))

  • 163 Accesses

Abstract

The fracture surface energy of soda-lime glass was measured at temperatures of 77, 195, and 300°K in various media using the double-cantilever cleavage technique. Values obtained for the fracture surface energy were 3.20 J/m2 in nitrogen (l), 3.10 J/m2 in toluene (l) — CO2 (s), and 2.83 J/m2 in dry nitrogen (g). During the experiment, slow crack motion was always observed prior to catastrophic failure of the specimens. The crack motion was complex, depending on the stress at the crack tip and the concentration of water in the medium surrounding the crack. Experimental results will be discussed with respect to several different mechanisms of crack growth.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A.A. Griffith, “Phenomena of Rupture and Flow in Solids,” Trans. Roy. Soc. (London) A221:163-198 (1921). See also A.A. Griffith, “Theory of Rupture,” Proc. First Intern. Cong. Appl. Mechanics, Delft, 1924, pp. 55-63.

    Google Scholar 

  2. J. C. Fisher and C. G. Dunn, “Surface and Interfacial Tensions of Single-Phase Solids,” in: W. Shockley, J.H. Hollomon, R. Maurer, and F. Seitz (eds.), Symposium on Imperfections in Nearly Perfect Crystals, Pocono Manor, John Wiley and Sons, (New York), 1952.

    Google Scholar 

  3. J. J. Gilman, “Direct Measurements of Surface Energies of Crystals,” J. Appl. Phys. 31: 2208–2218 (1960).

    Article  Google Scholar 

  4. See also J. J. Gilman, “Cleavage, Ductility, and Tenacity in Crystals,” in: B. L. Averbach, D. K. Feibeck, G. T. Hahn, and D. A. Thomas (eds.), Proc. Intern. Conf. on Mechanisms Fracture, Swampscott, Massachusetts, John Wiley and Sons, (New York), 1959, pp. 193–224.

    Google Scholar 

  5. A.R.C. Westwood and T.T. Hitch, “Surface Energy of {100} Potassium Chloride,” J. Appl. Phys. 34: 3085–3089 (1963).

    Article  Google Scholar 

  6. J. P. Berry, “Some Kinetic Considerations of the Griffith Criterion for Fracture, Part I,” J. Mech. Phys. Solids 8:194–206 (1960).

    Article  MATH  Google Scholar 

  7. “Handbook of Chemistry and Physics,” 37th edition, Chemical Rubber Publishing Co., 1956, p. 2325.

    Google Scholar 

  8. W. F. Linke (ed.), “Solubilities of Inorganic and Metal Organic Compounds, Seidel,” 4 edition, Vol. 1, D. Van Nostrand Co., (Princeton), 1958, p. 1135.

    Google Scholar 

  9. H. Schardin, “Velocity Effects in Fracture,” in: B. L. Averbach, D.K. Feibeck, G.T. Hahn, and D. A. Thomas (eds.), Proc. Intern. Conf. on Mechanisms of Fracture, Swampscott, Massachusetts, John Wiley and Sons, (New York), 1959, pp. 297–330.

    Google Scholar 

  10. J.B. Murgatroyd, “The Significance of Surface Marks on Fractured Glass,” J. Soc. Glass Technol. 26: 155–171 (1942).

    Google Scholar 

  11. F. C. Roesler, “Brittle Fractures near Equilibrium,” Proc. Phys. Soc. (London) 69B: 981 (1956).

    Article  Google Scholar 

  12. W. C. Levengood and W. H. Johnston, “Kinetics of Slow Fractures in Glass,” J. Chem. Phys. 26: 1184–1185 (1957).

    Article  Google Scholar 

  13. R. J. Charles and W.B. Hillig, “The Kinetics of Glass Failure by Stress Corrosion,” Symposium on the Mechanical Strength of Glass and Ways of Improving It, Union Scientifique Continentale du Verre, 1961.

    Google Scholar 

  14. C. E. Inglis, “Stresses in a Plate Due to the Presence of Cracks and Sharp Corners,” Trans. Inst. Naval Architects (London) 55: 219 (1913).

    Google Scholar 

  15. A. Smekal, “The Nature of the Mechanical Strength of Glass,” J. Soc. Glass Technol. 20: 432–448 (1936).

    Google Scholar 

  16. E.F. Poncelet, “A Theory of Static Fatigue for Brittle Solids,” in: Fracturing of Metals, Am. Soc. Metals, 1948, pp. 201-227.

    Google Scholar 

  17. E. Saibel, “The Speed of Propagation of Fracture Cracks,” in: Fracturing of Metals, Am. Soc. Metals, 1948, pp. 275-281.

    Google Scholar 

  18. P. Gibbs and I. B. Cutler, “On the Fracture of Glass Which Is Subjected to Slowly Increasing Stress,” J. Am. Ceram. Soc. 34: 200–206 (1951).

    Article  Google Scholar 

  19. D. A. Stuart and O. L. Anderson, “Dependence of Ultimate Strength of Glass Under Constant Load on Temperature, Ambient Atmosphere, and Time,” J. Am. Ceram. Soc. 36: 416–424 (1953).

    Article  Google Scholar 

  20. S.M. Cox, “A Kinetic Approach to the Theory of the Strength of Glass,” J. Soc. Glass Technol. 32: 127–146 (1948).

    Google Scholar 

  21. W. B. Hillig, “Sources of Weakness and the Ultimate Strength of Brittle Amorphous Solids,” in: J.D. Mackenzie (ed.), Modern Aspects of the Vitreous State, Vol. 2, Butterworth and Co., (London), 1962, pp. 152–194.

    Google Scholar 

  22. R. J. Charles, “A Review of Glass Strength,” in: J.E. Burke (ed.), Progress in Ceramic Science, Vol. 1, Pergamon Press, (New York), 1961, pp. 1–38.

    Google Scholar 

  23. W. P. Berdennikov, “Messung der Oberflächenspannung von Festen Körpern,” Soviet Phys. Z. S. 4:397-419 (1933); Zhur. Fiz. Khim. 5(2–3):358(1934). (A summary of these articles is given in: Surface Energy of Solids by V. D. Kuznetsov, Her Majesty’s Stationary Office, London, 1957, pp. 224-234.)

    Google Scholar 

  24. E. B. Shand, “Correlation of Strength of Glas s with Fracture Flaws of Measured Size,” J. Am. Ceram. Soc. 44: 451–455 (1961).

    Article  Google Scholar 

  25. G. W. Morey, “The Properties of Glass,” 2 edition, Reinhold, (New York), 1954, p. 191.

    Google Scholar 

  26. H. Freundlich, “Colloid and Capillary Chemistry,” translated from the 3rd German edition by H. S. Hatfield, Dutton (New York), 1922, p. 52.

    Google Scholar 

  27. D.M. Marsh, “Plastic Flow in Glass,” Proc. Roy. Soc. 279A: 420–435 (1964).

    Article  Google Scholar 

  28. E. Orowan, “Energy Criteria of Fracture,” Welding J. Res. Suppl. 34;157s–160s (1955).

    Google Scholar 

  29. D.M. Marsh, “Plastic Flow and the Mechanical Properties of Glass,” Technical Report No. 161, Tube Investments Research Laboratories, Hinnton Hall, Cambridge, 1963.

    Google Scholar 

  30. I. Náray-Szabó and J. Ladik, “Strength of Silica Glass,” Nature 188:226–227 (1960).

    Article  Google Scholar 

  31. I.N. Sneddon, “Crack Problems in the Mathematical Theory of Elasticity,” Nonr 486(06), File No. ERD-126/1, May 15, 1961, pp. 13-44.

    Google Scholar 

  32. K. Wolf, “Zur Bruchtheorie von A. Griffith,” Z. Math. Angew. Mech. 3: 107–112 (1923).

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1966 Springer Science+Business Media New York

About this paper

Cite this paper

Wiederhorn, S.M. (1966). Fracture Surface Energy of Soda-Lime Glass. In: Kriegel, W.W., Palmour, H. (eds) The Role of Grain Boundaries and Surfaces in Ceramics. Materials Science Research. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-6311-6_27

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-6311-6_27

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-6162-4

  • Online ISBN: 978-1-4899-6311-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics