Skip to main content

Response Time in High-Frequency Quantum Transport

  • Chapter
Book cover Quantum Coherence in Mesoscopic Systems

Part of the book series: NATO ASI Series ((NSSB,volume 254))

Abstract

The theory of quantum transport is the theoretical basis for nanostructure devices. In the last few years, the theory of quantum transport has been extensively discussed, developed, and tested [1]. Much of this discussions, however, has been centered on DC transport. The question naturally arises as to whether, and if so to what extent, we can generalize the results of DC Quantum transport theory and apply them in the high frequency regime. In this paper we study this question. Specifically, we consider the question of the intrinsic time scale of AC operation. Just like the drift diffusion process in a conventional semiconductor device sets one such time scale, so too do various physical processes in a quantum device. We concentrate on two such processes: the RC response and the time scale related to tunneling (see below). It will become clear in the following that this problem is a complicated one; while various formulations in the literature capture some aspects of the problem, a complete description does not appear possible, and any oversimplification can only lead to erroneous results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. For a general review see, e.g. the articles in: The Physics of Nonlinear Transport in Semiconductors, D.K. Ferry, J.R. Baker, C. Jacoboni, eds., Plenum, New York (1980); The Physics of Submicron Structures, H.L. Grubin, K. Hess, G.J. Iafrate, D.K. Ferry, eds., Plenum, New York (1982); IBM J. of Res. & Dev., 32, issues 1 and 3 (1988)

    Google Scholar 

  2. E.P. Wigner, Phys. Rev. 98, 145 (1955);

    Article  ADS  MATH  MathSciNet  Google Scholar 

  3. F.J. Smith, Phys. Rev. 118, 349 (1960)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  4. D.D. Coon and H.C. Liu, Appl. Phys. Lett. 49, 94 (1986)

    Article  ADS  Google Scholar 

  5. M. Büttiker and R. Landauer, Phys. Rev. Lett. 49, 1739 (1982)

    Article  ADS  Google Scholar 

  6. S. Collins, D. Lowe, and J.R. Barker, J. Phys. C 20, 6233 (1987)

    Article  ADS  Google Scholar 

  7. E.H. Hauge and J.A. Stovneng, Rev. Mod. Phys. 61, 917 (1989)

    Article  ADS  Google Scholar 

  8. P. Gueret, A. Baratoff, and E. Marclay, Verhandlungen der Deutschen Physikalischen Gesellschaft, Reihe 6, Band 21, 1446 (1986)

    Google Scholar 

  9. S. Luryi, Appl. Phys. Lett. 47, 490 (1985)

    Article  ADS  Google Scholar 

  10. Y. Fu, ‘Switching speed of a tunneling junction and the X-ray edge problem’, to be published

    Google Scholar 

  11. T.C.L.G. Sollner, W.D. Goodhue, P.E. Tannenwald, CD. Parker, and D.D. Peck, Appl. Phys. Lett. 43, 588 (1983)

    Article  ADS  Google Scholar 

  12. T.C.L.G. Sollner, P.E. Tannenwald, D.D. Peck, and W.D. Goodhue, Appl. Phys. Lett. 45, 1319 (1984)

    Article  ADS  Google Scholar 

  13. F.J. Whitaker, G.A. Mourou, T.C.L.G. Sollner, and W.D. Goodhue, Appl. Phys. Lett. 53, 385 (1988)

    Article  ADS  Google Scholar 

  14. E.R. Brown, T.C.L.G. Sollner, CD. Parker, W.D. Goodhue, and C.L. Chen, Appl. Phys. Lett. 55, 1777 (1989)

    Article  ADS  Google Scholar 

  15. M. Tsuchiya, T. Matsusue, and H. Sakaki, Phys. Rev. Lett. 59, 2356 (1987)

    Article  ADS  Google Scholar 

  16. W.R. Frensley, Phys. Rev. B 36, 1570 (1987)

    Article  ADS  Google Scholar 

  17. N.C. Kluksdahl, A.M. Kliman, D.K. Ferry, and C. Ringhofer, IEEE Electron Device Lett. 9, 457 (1988)

    Article  ADS  Google Scholar 

  18. N.C. Kluksdahl, A.M. Kriman, D.K. Ferry, and C Ringhofer, Phys. Rev. B 39, 7720 (1989)

    Article  ADS  Google Scholar 

  19. C. Ringhofer, D.K. Ferry, and N.C. Kluksdahl, Transport Theory and Statistical Physics 18, 331 (1989)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  20. Y. Fu, ‘AC I-V characteristics of a resonant tunneling diode: a steady state numerical study’, to be published

    Google Scholar 

  21. CM. Bender, private communication

    Google Scholar 

  22. G.D. Mahan, Phys. Rev. 163, 612 (1967);

    Article  ADS  Google Scholar 

  23. P. Nozières and CT. De Dominicis, Phys. Rev. 178, 1097

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media New York

About this chapter

Cite this chapter

Fu, Y. (1991). Response Time in High-Frequency Quantum Transport. In: Kramer, B. (eds) Quantum Coherence in Mesoscopic Systems. NATO ASI Series, vol 254. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-3698-1_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-3698-1_22

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-3700-1

  • Online ISBN: 978-1-4899-3698-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics