Skip to main content

Overview of ER Technology

  • Chapter
Progress in Electrorheology

Abstract

Electro-rheological materials (ERM) are materials whose rheological properties are strong functions of the electric field strength imposed upon them. ERM are typically fluids in the absence of an electric field but under constant shear stress at high enough fields, the materials can solidify into viscoelastic solids. In the liquid state during flow, these materials exhibit an apparent viscosity which can be increased by thousands of times by the application of an electric field. In their solid state, the materials are viscoelastic and characterized by complex modulii of which both the real and complex parts are strong functions of the electric field. Further, all field induced mechanical changes are virtually instantaneously reversible. The molecular mechanisms responsible for the phenomenon are however poorly understood as are the flow characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Duff, A.W. (1896), Phys. Rev., 4, 23.

    Google Scholar 

  2. Winslow, W.M. (1947), “Methods and means for transmitting electrical impulses into mechanical force”, (U.S.Pat.), 25 Mar. 1947, No.2417850.

    Google Scholar 

  3. Winslow, W.M. (1949). “Induced fibration of suspensions”, J. Appl. Phys. 20:1137–1140.

    Article  CAS  Google Scholar 

  4. Winslow, W.M. (1953), “Field controlled hydraulic device”, (U.S.Pat.), 8 Dec. 1953, No. 2661596.

    Google Scholar 

  5. Winslow, W.M.(1962), “Field response force transmitting compositions”, (U.S.Pat.), 1962, No. 3047507.

    Google Scholar 

  6. Block, H. and J.P. Kelly (1988). “Electrorheology”, J. Phys. D: Appl. Phys. 21:1661–1677.

    Article  CAS  Google Scholar 

  7. Uejima, H. (1972). “Dielectric mechanism and rheological properties of electro-fluids,” Jap. J. Appl. Phys. 11(3): 319–326.

    Article  CAS  Google Scholar 

  8. Sugimoto, N. (1977), “Winslow effect in ion exchange-resin dispersions”, Bull. Jap. Soc. Mech. Eng. 20(149), 1476.

    Article  CAS  Google Scholar 

  9. Trapeznikov, A.A., Petrzhik, G.G. and O.A. Cherlkova (1981), “Electrorheological properties of nonaqueous dispersions of titanium dioxide and silicon dioxide in relation to concentration and moisture content of filler”, Kolloid Z. 43(6), 1134.

    CAS  Google Scholar 

  10. Goosens, J.(1987), “Electroviscous fluids”, (U.S.Pat.), 27 Oct. 1987, No. 4702855.

    Google Scholar 

  11. Klass, D.L. and T.W. Martinek (1966), “Preparation of silica for use in fluid responsive compositions,” (U.S.Pat.), 10 Oct., No. 3250726.

    Google Scholar 

  12. Filisko, F.E. and W.E. Armstrong (1988). “Electric field dependent fluids”, (U.S.Pat.), 17 May 1988, No. 4744914.

    Google Scholar 

  13. Treasurer, U., L. H. Radzilowski and F.E. Filisko (1991). “Polyelectrolytes as inclusions in water free electrorheological materials: chemical characteristics,” J. Rheol. 35(4).

    Google Scholar 

  14. Filisko, F.E. and L.H. Radzilowski (1990). “Intrinsic mechanism for activity of alumino-silicate based electrorheological fluids”, J. Rheol. 34(4): 539–552.

    Article  Google Scholar 

  15. Klass, D.L. and T.W. Martinek (1967a). “Electroviscous fluids I. Rheological properties,” J. Appl. Phys. 38(1): 67–74.

    Article  CAS  Google Scholar 

  16. Brooks, D., J. Goodwin, C. Hjelm, L. Marshall, C. Zukowski (1986). “Viscoelastic studies on an electrorheological fluid.”, Colloids Surf. 18:293.

    Article  CAS  Google Scholar 

  17. Klass, D.L. and T.W. Martinek (1967b). “Electroviscous fluids II: Electrical properties,” J. Appl. Phys. 38(1): 75–80.

    Article  CAS  Google Scholar 

  18. Gast, A.P. and CF. Zukoski (1989), “Electrorheological fluids as colloidal suspensions”, Adv. Colloid Int. Sci.,30, 153.

    Google Scholar 

  19. Pohl, H.A. (1951). “The motion and precipitation of suspensions in divergent electric fields”, J. Appl, Phys. 22(7): 869–871.

    Article  CAS  Google Scholar 

  20. Voet, A. (1947) “Dielectrics and rheology of non-aqueous dispersions,” J. Phys. Colloid Chem., 51:1037–1063.

    Article  CAS  Google Scholar 

  21. Davies, J.T. and E.K. Rideal (1961). Interfacial Phenomena, Ch.2, Academic Press, NY.

    Google Scholar 

  22. Lyklema, J. (1985), “Interfacial Chemistry of Disperse Systems”, J. Matls.Ed. 7(2), 211.

    Google Scholar 

  23. VonHippel, A.R. (1954). Dielectric and Waves, pp. 228–234, John Wiley & Sons, Inc., New York.

    Google Scholar 

  24. Dukhin, S.S. and V.N. Shilov (1974). Dielectric Phenomena and the Double Layer in Disperse Systems and Polyelectrolyte, translated from Russian by D. Lederman, Keter Publishing House Jerusalem Ltd.

    Google Scholar 

  25. Deinega, Y.F. and G.V. Vinogradov (1984). “Electric fields in the rheology of disperse systems,”, Rheol. Acta 23:636–651.

    Article  CAS  Google Scholar 

  26. Kitahara, A. (1984). “Nonaqueous systems”, in Electrical Phenomena at Interfaces: Fundamentals, Measurements and Applications, eds. A. Kitahara and A Watanabe, pp. 119-143, Marcel Dekker, Inc., New York.

    Google Scholar 

  27. Conway, B.E. and A. Dobry-Duclaux (1960), “Viscosity of suspensions of electrically charged particles and solutions of polymeric electrolytes”, in Rheology: Theory and Applications, Vol.3, ed. F.R. Eirich, Academic Press, NY.

    Google Scholar 

  28. Schul’man, Z.P., Y.F. Deinega, R.G. Gorodkin, and A.D. Matsepuro (1971). “Some aspects of electrorheology,”, Prog. in Heat and Mass Transfer 4:109–125.

    Google Scholar 

  29. Maxwell, J.C. (1892). Electricity and Magnetism, Vol.1. 452, Claredon Press, Oxford.

    Google Scholar 

  30. Hedvig, P. (1977), Dielectric spectroscopy of polymers, John Wiley & Sons, Inc., New York, pp.282–296.

    Google Scholar 

  31. Block, H. and J.P. Kelly (1985). Proc. IEE Colloq. 14:1.

    Google Scholar 

  32. Block, H., J.P. Kelly, A. Qin, and T. Watson (1990). “Materials and mechanisms in electrorheology”, Langmuir 6(1): 6–14.

    Article  Google Scholar 

  33. Breck, S.W. (1974). Zeolite Molecular Sieves, John Wiley & Sons, Inc., New York.

    Google Scholar 

  34. Denkewicz, R.P. (1987). “Zeolite science: an overview”, J. Matls. Ed. 9(15): 519–585.

    CAS  Google Scholar 

  35. Barrier, R.M. (1959), Brit. Chem. Eng. 5:1.

    Google Scholar 

  36. Freeman, D.C. and D.N. Stamires (1961), J. Chem. Phys. 35, 799.

    Article  CAS  Google Scholar 

  37. Oosawa, F. (1971). Polyelectolytes, Marcel Dekker, Inc., New York.

    Google Scholar 

  38. F.E. Filisko (1993), “Materials aspects of ER fluids”, in Electrorehological Fluids: A Research Needs Assessment, Department of Energy Report DOE/ER/30172, May.

    Google Scholar 

  39. Yang, I-K and A.D. Shine (1991), “Electrorheology of Poly(n-hexyl isocyanate) solutions”, presented at Soc. of Rheology meeting, Oct.2–24, 1991 (Rochester NY.

    Google Scholar 

  40. Conrad, H., M. Fisher, A.F. Sprecher (1989). “Characterization of the structure of a model electrorheological fluid employing stereology.” Electrorheological Fluids-Proceedings of the Second International Conference on ER Fluids (pub. in 1990), Raleigh, North Carolina, USA, August 7–9, Technomic Pub. Co., Inc.

    Google Scholar 

  41. Sprecher, A.F., Carlson, J.D., and H. Conrad (1987), “Electrorheology at small strains and strain rates of suspensions of silica particles in silicone oil”, Matl. Sci. and Eng. 95, 187–197.

    Article  CAS  Google Scholar 

  42. Frisch, H.L. and R. Simha (1956). “The viscosity of colloidal suspensions and macromolecular solutions” in Rheology: Theory and Applications, Vol.1, ed. F.R. Eirich, chap. 14, Academic press, NY.

    Google Scholar 

  43. Gamota, D.R. and F.E. Filisko (1991a), “Dynamic mechanical studies of electrorheological materials: Moderate frequencies”, J. Rheol. 35(3), 399–426.

    Article  CAS  Google Scholar 

  44. Gamota, D.R. and F.E. Filisko (1991b), “High frequency dynamic mechanical study of an aluminosilicate electrorheological material”, J. Rheol. 35(7), 1411–1426.

    Article  CAS  Google Scholar 

  45. Stanway, R., Sproston, J. and R. Firoozian(1989), “Identification of damping law on an electrorheological fluid: a sequential fitting approach”, J. Dynamic Systems: Measurement & Control 111, 91-95.

    Google Scholar 

  46. Bullough, W. A. and M. B. Foxon (1978). “A proportionate Coulomb and viscously damped isolation system.” J. Sound & Vib. 56(1): 35–44.

    Article  Google Scholar 

  47. Shul’man, Z. P., B. M. Khusid, E.V. Korobkov and E.P. Khizhinsky (1987). “Damping of mechanical-system oscillations by a non-Newtonian fluid with electric-field dependent parameters.”, J. Non-Newtonian Fluid Mechanics 25:329–346.

    Article  CAS  Google Scholar 

  48. Saito, N. and T. Kato (1957), “Viscoelasticity and complex dielectric constant in the presence of an electric field and shear laminar flow in macromolecular solutions”, J. Phys. Soc. Japan 12(12), 1393–1397.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media New York

About this chapter

Cite this chapter

Filisko, F.E. (1995). Overview of ER Technology. In: Havelka, K.O., Filisko, F.E. (eds) Progress in Electrorheology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-1036-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-1036-3_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-1038-7

  • Online ISBN: 978-1-4899-1036-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics