Skip to main content

Three- and Four-Dimensional Heteronuclear NMR

  • Chapter
Methods in Protein Structure Analysis

Abstract

The principal source of geometric information used to solve three dimensional structures of macromolecules by NMR resides in short (< 5Å) approximate interproton distance restraints derived from nuclear Overhauser enhancement (NOE) measurements (1–5). In order to extract this information it is essential to first completely assign the 1H spectrum of the macromolecule in question and then to assign as many structurally useful NOE interactions as possible. The larger the number of NOE restraints, the higher the precision and accuracy of the resulting structures (5–7). Indeed, with current state-of-the-art methodology it is now possible to obtain NMR structures of proteins at a precision and accuracy comparable to 2 Å resolution crystal structures (7–9)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Wüthrich, K., 1986, NMR of Proteins, Wiley, New York

    Google Scholar 

  2. Clore, G.M., and Gronenborn, A.M., 1989, Determination of three-dimensional structures of proteins in solution by nuclear magnetic resonance spectroscopy. Prot. Eng. 1: 275–288.

    Google Scholar 

  3. Clore, G.M., and Gronenborn, A.M., 1989, Determination of three-dimensional structures of proteins and nucleic acids in solution by nuclear magnetic resonance spectroscopy. CRC Crit Rev. Biochem. Mol. Biol. 24: 479–564.

    Article  CAS  Google Scholar 

  4. Bax, A., 1989, Two-dimensional NMR and protein structure, Ann Rev. Biochem. 58: 223–256.

    Article  PubMed  CAS  Google Scholar 

  5. Clore, G.M., and Gronenborn, A.M., 1991, Structures of larger proteins in solution: three-and four-dimensional hetronuclear NMR spectroscopy. Science 252: 1390–1399.

    Article  PubMed  CAS  Google Scholar 

  6. Clore, G.M., and Gronenborn, A.M., 1991, Two, three and four dimensional NMR methods for obtaining larger and more precise three-dimensional structures of proteins in solution. Ann. Rev. Biophys. Biophys. Chem. 20: 29–63.

    Article  CAS  Google Scholar 

  7. G.M. Clore, and A.M. Gronenborn, 1991, Comparison of the solution nuclear magnetic resonance and X-ray crystal structures of human recombinant interleukin-113. J. Mol. Biol. 221: 47–53.

    Article  PubMed  CAS  Google Scholar 

  8. Clore, G.M., Robien, M.A., and Gronenborn, A.M., 1993, Exploring the limits of precision and accuracy of protein structures determined by nuclear magnetic resonance spectroscopy. J. Mol. Biol. 231: 82–102.

    Article  PubMed  CAS  Google Scholar 

  9. Shaanan, B., Gronenborn, A.M., Cohen, G.H., Gilliland, G.L., Veerapandian, B., Davies, D.R., and Clore, G.M., 1992, Combining experimental information from crystal and solution studies: joint X-ray and NMR refinement, Science 257: 961–964.

    Article  PubMed  CAS  Google Scholar 

  10. Dyson, H.J., Gippert, D.A., Case, D.A., Holmgren, A., and Wright, P.E., 1990, Three-dimensional solution structure of the reduced form of Escherichia coli thioredoxin determined by nuclear magnetic resonance spectroscopy, Biochemistry 29: 4129–4136.

    Article  PubMed  CAS  Google Scholar 

  11. Forman-Kay, J.D., Clore, G.M., Wingfield, P.T., and Gronenborn, A.M., 1991, The high resolution three-dimensional structure of reduced recombinant human thioredoxin in solution, Biochemistry 30: 2685–2698.

    Article  PubMed  CAS  Google Scholar 

  12. Oschkinat, H., Griesinger, C., Kraulis, P.J., Sorensen, O.W., Ernst, R.R., Gronenbor, A.M., and Clore, G.M., 1988, Three-dimensional NMR spectroscopy of a protein in solution, Nature (Lond.) 332: 374–376.

    Article  CAS  Google Scholar 

  13. Clore, G.M., and Gronenborn, A.M., 1991, Applications of three-and four-dimensional heteronuclear NMR spectroscopy to protein structure determination, Progr. Nucl. Magn. Reson. Spectrosc. 23: 43–92.

    Article  CAS  Google Scholar 

  14. Bax, A., and Grzesiek, S., 1993, Methodological Advances in Protein NMR, Acct. Chem. Res. 26: 131–138.

    Article  CAS  Google Scholar 

  15. Kay, L.E., Clore, G.M., Bax, A., and Gronenborn, A.M., 1990, Four-dimensional heteronuclear triple resonance NMR spectroscopy of interleukin-113 in solution, Science 249: 411–414.

    Article  PubMed  CAS  Google Scholar 

  16. Clore, G.M., Kay, L.E., Bax, A., and Gronenborn, A.M., 1991, Four-dimensional 13C/13C-edited nuclear Overhauser enhancement spectroscopy of a protein in solution: application to interleukin-10. Biochemistry 30, 12–18.

    Article  PubMed  CAS  Google Scholar 

  17. Zuiderweg, E.R.P., Petros, A.M., Fesik, S.W., and Olejniczak, E.T., 1991, Four-dimensional [13C, 1H, 13C, H] HMQC-NOE-HMQC NMR spectroscopy: resolving tertiary NOE distance restraints in spectra of larger proteins, J. Am. Chem. Soc. 113: 370–372.

    Article  CAS  Google Scholar 

  18. Bax, A., Clore, G.M., Driscoll, P.C., Gronenborn, A.M., Ikura, M., and Kay, L.E., 1990, Practical aspects of proton-carbon-carbon-proton three-dimensional correlation spectroscopy of 13C-labeled proteins. J. Magn. Reson. 87: 620–628.

    CAS  Google Scholar 

  19. Bax, A., Clore, G.M., and Gronenborn, A.M., 1990, 1H–1H correlation via isotropic mixing of 13C magnetization: a new three-dimensional approach for assigning 1H and 13C spectra of 13C-enriched proteins. J. Magn. Reson. 88, 425–431.

    Google Scholar 

  20. Fesik, S.W., Eaton, H.L., Olejniczak, E.T., Zuiderweg, E.R.P., McIntosh, L.P., and Dahlquist, F.W., 1990, 2D and 3D NMR spectroscopy employing 13C–13C magentization transfer by isotropic mixing: spin system identification in large proteins, J. Am. Chem. Soc. 112, 886–888.

    Google Scholar 

  21. Clore, G.M., Bax, A., Driscoll, P.C., Wingfield, P.T., and Gronenborn, A.M., 1990, Assignment of the side chain IH and 13C resonances of interleukin-13 using double and triple resonance hetronuclear three-dimensional NMR spectroscopy. Biochemistry 29: 8172–8184.

    Article  PubMed  CAS  Google Scholar 

  22. Ikura, M., Kay, L.E., and Bax, A., 1990, A novel approach for sequential assignment of ‘H, 13C, and 15N spectra of larger protens: heteronuclear triple-resonance NMR spectroscopy: application to calmodulin, Biochemistry 29, 4659–4667.

    Article  PubMed  CAS  Google Scholar 

  23. Powers, R., Gronenborn, A.M., Clore, G.M., and Bax, A., 1991, Three-dimensional triple resonance NMR of 13C/15N enriched proteins using constant-time evolution. J. Magn. Reson. 94: 209–213.

    CAS  Google Scholar 

  24. Grzesiek, S., and Bax, A., 1992, Correlating backbone amide and sidechain resonances in larger proteins by multiple relayed triple resonance NMR, J. Am. Chem. Soc. 114: 6291–6293.

    Article  CAS  Google Scholar 

  25. Grzesiek, S., and Bax, A., 1993, Amino acid type determination in the sequential assignment procedure of uniformly 13C/15N enriched proteins, J. Biomol. NMR 3: 185–204.

    PubMed  CAS  Google Scholar 

  26. Grzesiek, S., Anglister, J., and Bax, A., 1993, Correlation of backbone amide and aliphatic sidechain resonances in 13C/15N-enriched proteins by isotropic mixing of 13C magnetization, J. Magn. Reson. Series B 101: 114–119.

    Article  CAS  Google Scholar 

  27. Grzesiek, S., and Bax, A., 1992, An efficient experiment for sequential backbone assignment of medium sized isotopically enriched proteins, J. Magn. Reson. 99: 201–207.

    CAS  Google Scholar 

  28. Clore, G.M., Bax, A., and Gronenborn, A.M., 1991, Stereospecific assignment of b-methylene protons in larger proteins using three-dimensional 15N-separated Hartmann-Hahn and 13C-separated rotating frame Overhauser spectroscopy. J. Biomol. NMR 11: 13–22.

    Article  Google Scholar 

  29. Bax, A., and Pochapsky, S.J., 1992, Optimized recording of heteronuclear multi-dimensional NMR spectra using pulsed field gradients, J. Magn. Reson. 99: 638–643.

    CAS  Google Scholar 

  30. Vuister, G.W., Clore, G.M., Gronenborn, A.M., Powers, R., Garrett, D.S., Tschudin, R, and Bax, A., 1993, Increased resolution and improved spectral quality in four-dimensional 13C/13C separated HMQC-NOEHMQC spectra using pulsed field gradients, J. Magn. Reson. Series B 101: 210-–213.

    Google Scholar 

  31. Clore, G.M., Wingfield, P.T., and Gronenbom, A.M., 1991, High resolution three-dimensional structure of interleukin-113 in solution by three and four dimensional nuclear magnetic resonance spectroscopy. Biochemistry 30: 2315–2323.

    Article  PubMed  CAS  Google Scholar 

  32. Powers, R., Garrett, D.S., March, C.J., Frieden, E.A., Gronenborn, A.M., and Clore, G.M., 1992, Three-dimensional solution structure of interleukin-4 by multi-dimensional heteronuclear magnetic resonance spectroscopy, Science 256: 1673–1677.

    Article  PubMed  CAS  Google Scholar 

  33. Smith, L.J., Redfield, C., Boyd, J., Lawrence, G.M.P., Edwards, R.G., Smith, R.A.G., and Dobson, C.M., 1992, Human interleukin-4: the solution structure of a four helix bundle protein. J. Mol. Biol. 224: 900–904.

    Article  Google Scholar 

  34. Powers, R., Garrett, D.S., March, C.J., Frieden, E.A., Gronenbom, A.M., and Clore, G.M., 1993, The high resolution three-dimensional solution structure of interleukin-4 determined by multi-dimensional heteronuclear magnetic resonance spectroscopy, Biochemistry 32: 6744–6762.

    Article  PubMed  CAS  Google Scholar 

  35. Fairbrother, W.J., Gippert, G.P., Reizer, J., Saier, M.J., and Wright, P.E., 1992, Low resolution structure of the Bacillus subtilis glucose permease IIA domain derived from heteronuclear three-dimensional NMR spectroscopy, FEBS Lett. 296: 148–152.

    Article  PubMed  CAS  Google Scholar 

  36. Ikura, M., Clore, G.M., Gronenborn, A.M., Zhu, G., Klee, C.B., and Bax, A., 1992, Solution structure of a calmodulin-target peptide complex by multi-dimensional NMR, Science 256: 632–638.

    Article  PubMed  CAS  Google Scholar 

  37. Thierault, Y., Logan, T.M., Meadows, R., Yu, L., Olejniczak, E.T., Holzman, T.F., Sikmmer, R.L., and fesik, S.W., 1993, Solution structure of the cyclosporin A/cyclophilin complex by NMR, Nature (Lond.) 361, 88–91.

    Article  Google Scholar 

  38. Omichinski, J.G., Clore, G.M., Schaad, O., Felsenfeld, G., Trainor, C., Appella, E., Stahl, S.J., and Gronenborn, A.M., 1993, NMR structure of a specific DNA complex of Zn-containing DNA binding domain of GATA-1, Science 261: 438–446.

    Article  PubMed  CAS  Google Scholar 

  39. Lodi, P.J., Garrett, D.S., Kuszewski, J., Tsang, M.L.S., Weatherbee, J.A., Leonard, W.J., Gronenborn, A.M., and Clore, G.M., 1994, High resolution solution structure of the ß chemokine hMIP-113 by multi-dimensional NMR, Science 263: 1762–1767.

    Article  PubMed  CAS  Google Scholar 

  40. Clore, G.M., Omichinski, J.G., Sakaguchi, K., Zambrano, N., Sakamoto, H., Appella, E., and Gronenbom, A.M., 1994, High-resolution solution structure of the oligomerization domain of p53 by multi-dimensional NMR, Science 265: 386–391.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media New York

About this chapter

Cite this chapter

Clore, G.M., Gronenborn, A.M. (1995). Three- and Four-Dimensional Heteronuclear NMR. In: Atassi, M.Z., Appella, E. (eds) Methods in Protein Structure Analysis. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-1031-8_45

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-1031-8_45

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-1033-2

  • Online ISBN: 978-1-4899-1031-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics