Skip to main content

Measurement of Asp/Asn Damage in Aging Proteins, Chemical Interconversion of Aspartyl Isomers, 18O Tagging of Enzymatically Repaired Aspartyl Sites, and Enzyme Automethylation at Sites of Asp/Asn Damage

  • Chapter
Methods in Protein Structure Analysis

Abstract

Asp/Asn damage in aging proteins, resulting from the propensity of L-Asn and L-Asp residues to spontaneously convert to a mixture of a-epimerized and 13-isomerized aspartyl products via succinimide intermediates (Figure 1), is a practical problem from the standpoint of researchers seeking to isolate and study pure proteins. In particular, the advent of protein overexpression systems and the convenience of working with large quantities of protein has made it increasingly common for investigators with no prior intention of studying spontaneous protein damage to find that a protein of interest has undergone a transformation that is ultimately found to be due to Asp/Asn damage. The first indication of this problem is generally the detection of isoforms of a polypeptide with altered chromatographic or electrophoretic properties, often as a function of a heat-step involved in the purification of the protein. Other times the formation of these spontaneously formed isoforms has been traced to a prolonged fermentor run or a lengthy storage period during the production of the protein. Though the isoforms of the protein may make up only a few percent of the total material, their presence is troubling since the purity of the protein is compromised.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Atassi, M. Z., and Rosenthal, A. F., 1969 Specific reduction of carboxyl groups in peptides and proteins by diborane, Biochem. J., 111: 593.

    PubMed  CAS  Google Scholar 

  • Bischoff, R., Lepage, P., Jaquinod, M., Cauet, G., Acker-Klein, M., Clesse, D., Laporte, M., Bayol, A., Van Dorsselaer, A., and Roitsch, C., 1993 Sequence-specific deamidation: Isolation and biochemical characterization of succinimide intermediates of recombinant hirudin, Biochemistry, 32: 725.

    Article  PubMed  CAS  Google Scholar 

  • Cacia, J., Quan, C. P., Vasser, M., Sliwkowski, M. B., and Frenz, J., 1993 Protein sorting by high-performance liquid chromatography. I. Biomimetic interaction chromatography of recombinant human deoxyribonuclease I on polyionic stationary phases, J. Chromatog., 634: 229.

    Article  CAS  Google Scholar 

  • Carter, D. A., and McFadden, P. N., 1994a Determination of ß-isomerized aspartic acid as the corresponding alcohol, J. Protein Chem., 13: 97.

    Article  PubMed  CAS  Google Scholar 

  • Carter, D. A., and McFadden, P. N., 1994b Trapping succinimides in aged polypeptides by chemical reduction, J. Protein Chem., 13: 89.

    Article  PubMed  CAS  Google Scholar 

  • Chazin, W. J., Kordel, J., Thulin, E., Hofmann, T., Drakenberg, T., and Forsen, S., 1989 Identification of an isoaspartyl linkage formed upon deamidation of bovine calbindin D-9k and structural characterization by 2D 1-H NMR, Biochemistry, 28: 8646.

    Article  PubMed  CAS  Google Scholar 

  • Daumy, G. O., Wilder, C. L., Merenda, J. M., McCall, A. S., Geoghegan, K. F., and Otterness, I. G., 1991 Reduction of biological activity of murine recombinant interleukin-113 by selective deamidation at asparagine-149, FEBS Lett, 278: 98.

    Article  PubMed  CAS  Google Scholar 

  • George-Nascimento, C., Lowenson, J., Borissenko, M., Calderon, M., Medina-Selby, A., Kuo, J., Clarke, S., and Randolph, A., 1990 Replacement of a labile aspartyl residue increases the stability of human epidermal growth factor, Biochemistry, 29: 9584.

    Article  PubMed  CAS  Google Scholar 

  • Johnson, B. A., Shirokawa, J. M., Hancock, W. S., Spellman, M. W., Basa, L. J., and Aswad, D. W., 1989 Formation of isoaspartate at two distinct sites during in vitro aging of human growth hormone, JBiol Chem, 264: 14262.

    CAS  Google Scholar 

  • Kondo, Y., and Witkop, B., 1968 Reductive ring openings of glutarimides and barbiturates with sodium borohydride, J. Org. Chem., 33: 206.

    Article  PubMed  CAS  Google Scholar 

  • Kwong, M. Y., and Harris, R. J., 1994 Identification of succinimide sites in proteins by N-terminal sequence analysis after alkaline hydroxylamine cleavage, Protein Sci., 3: 147.

    Article  PubMed  CAS  Google Scholar 

  • Lindquist, J. A., and McFadden, P. N., 1994a Automethylation of protein (D-aspartyl/ L-isoaspartyl) carboxyl methyltransferase: A response to enzyme aging, J. Protein Chem., 13: 23.

    Article  PubMed  CAS  Google Scholar 

  • Lindquist, J. A., and McFadden, P. N., 1994b Incorporation of two 180 atoms into a peptide during isoaspartyl repair reveals repeated passage through a succinimide intermediate., J. Protein Chem., 13: 553.

    Article  PubMed  CAS  Google Scholar 

  • McFadden, P. N., and Clarke, S., 1986 Chemical conversion of aspartyl peptides to isoaspartyl peptides: A method for generating new methyl-accepting substrates for the erythrocyte D-aspartyl/L-isoaspartyl protein methyltransferase, J. Biol. Chem., 261: 1 1503.

    Google Scholar 

  • McFadden, P. N., and Lindquist, J. A., 1994 A damaged subpopulation of protein (D-aspartyl/ L-isoaspartyl) carboxyl methyltransferase is methylated by a high-affinity, low-turnover reaction., J. Protein. Chem., 13: 453.

    Google Scholar 

  • Paranandi, M. V., Guzzetta, A. W., Hancock, W. S., and Aswad, D. W., 1994 Deamidation and isoaspartate formation during in vitro aging of recombinant tissue plasminogen activator, J. Biol. Chem., 269: 243.

    PubMed  CAS  Google Scholar 

  • Roher, A. E., Lowenson, J. D., Clarke, S., Wolkow, C., Wang, R., Cotter, R. J., Reardon, I. M., Zurcher-Neely, H. A., Heinrikson, R. L., Ball, M. J., and Greenberg, B. D., 1993 Structural alterations in the peptide backbone of beta-amyloid core protein may account for its deposition and stability in Alzheimer’s disease, J. Biol. Chem., 268: 3072.

    PubMed  CAS  Google Scholar 

  • Rosenthal, A. F., and Atassi, M. Z., 1967 Specific reduction of carboxyl groups in peptides, Biochem. Biophys. Acta, 147: 410.

    Article  PubMed  CAS  Google Scholar 

  • Sharma, S., Hammen, P. K., Anderson, J. W., Leung, A., Georges, F., Hengstenberg, W., Klevit, R. E., and Waygood, E. B., 1993 Deamidation of HPr, a phosphocarrier protein of the phosphoenolpyruvate: sugar phosphotransferase system, involves asparagine 38 (HPr-1) and asparagine 12 (HPr-2) in isoaspartyl acid formation, J. Biol. Chem., 268: 17695.

    PubMed  CAS  Google Scholar 

  • Teshima, G., Porter, J., Yim, K., Ling, V., and Guzzetta, A., 1991 Deamidation of soluble CD4 at asparagine-52 results in reduced binding capacity for the HIV-1 envelope glycoprotein gp120, Biochemistry, 30: 3916.

    Article  PubMed  CAS  Google Scholar 

  • Violand, B. N., Schlittler, M. R., Toren, P. C., and Siegel, N. R., 1990 Formation of isoaspartate-99 in bovine and porcine somatotropins, J. Prot. Chem., 9: 109.

    Article  CAS  Google Scholar 

  • Wingfield, P. T., Mattaliano, R. J., MacDonald, H. R., Craig, S., Clore, G. M., Gronenborn, A. M., and Schmeissner, U., 1987 Recombinant-derived interleukin-la stabilized against specific deamidation, Protein Eng., 1: 413.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media New York

About this chapter

Cite this chapter

Lindquist, J.A., McFadden, P.N. (1995). Measurement of Asp/Asn Damage in Aging Proteins, Chemical Interconversion of Aspartyl Isomers, 18O Tagging of Enzymatically Repaired Aspartyl Sites, and Enzyme Automethylation at Sites of Asp/Asn Damage. In: Atassi, M.Z., Appella, E. (eds) Methods in Protein Structure Analysis. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-1031-8_23

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-1031-8_23

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-1033-2

  • Online ISBN: 978-1-4899-1031-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics