Skip to main content
Book cover

Fatigue pp 101–108Cite as

The Role of the Sarcolemma Action Potential in Fatigue

  • Chapter

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 384))

Abstract

A prevalent feature of neuromuscular fatigue is a decline in the extracellularly recorded myoelectric signal. One factor that could underlie this change is a decrease in the amplitude of the sarcolemmal action potential. Based on observed reductions in action potential amplitude without effect on force, it has been argued that changes in the action potential during sustained activity would be unlikely to contribute to fatigue. However, those observations were primarily from experiments in which 1) high frequency stimulation may have caused signal cancellation due to action potential overlap; or 2) sustained membrane depolarization may have directly activated excitation-contraction coupling. The relatively low and narrow range of membrane depolarization required for full activation of amphibian and slow-twitch mammalian fibers makes them resistant to incomplete activation if action potentials are depressed during fatigue. Mammalian fast-twitch fibers, on the other hand, require greater depolarization for full activation and also exhibit a greater decrease in action potential amplitude with fatigue. Therefore, it seems probable that fatigue-related decline in action potential amplitude in these fibers leads to incomplete activation and loss of force.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Albers BA, Put JHM, Wallinga W & Wirtz P (1989). Quantitative analysis of single muscle fibre action potentials recorded at known distances. Electroencephalography and Clinical Neurophysiology 73, 245–253.

    Article  PubMed  CAS  Google Scholar 

  • Balog EM, Thompson LV & Fitts RH (1994). Role of sarcolemma action potentials and excitability in muscle fatigue. Journal of Applied Physiology 76, 2157–2162.

    Article  PubMed  CAS  Google Scholar 

  • Benzanilla F, Caputo C, Gonzalez-Serratos H & Venosa RA (1972). Sodium dependence of the inward spread of activation in isolated twitch muscle fibres of the frog. Journal of Physiology (London) 223, 507–523.

    Google Scholar 

  • Bigland-Ritchie B, Johansson R, Lippold OCJ & Woods JJ (1983). Contractile speed and EMG changes during fatigue of sustained maximal voluntary contractions. Journal of Neurophysiology 50, 313–324.

    PubMed  CAS  Google Scholar 

  • Bigland-Ritchie B, Kukulka CG, Lippold OCJ & Woods JJ (1982). The absence of neuromuscular transmission failure in sustained maximal voluntary contractions. Journal of Physiology (London) 330, 265–278.

    CAS  Google Scholar 

  • Caputo C (1972). The time course of potassium contractures of single muscle fibres. Journal of Physiology (London) 223, 483–505.

    CAS  Google Scholar 

  • Caputo C & de Bolaños PF (1979). Membrane potential, contractile activation and relaxation rates in voltage clamped short muscle fibres of the frog. Journal of Physiology (London) 289, 175–189.

    CAS  Google Scholar 

  • Chandler WK, Schneider MF, Rakowski RF & Adrian RH (1975). Charge movements in skeletal muscle. Philosophical Transactions of the Royal Society of London, Series B 270, 501–505.

    Article  CAS  Google Scholar 

  • Chapman JB (1969). Potentiating effect of potassium on skeletal muscle twitch. American Journal of Physiology 217, 898–902.

    PubMed  CAS  Google Scholar 

  • Clamann HP & Robinson AJ (1985). A comparison of electromyographic and mechanical fatigue properties in motor units of the cat hindlimb. Brain Research 327, 203–219.

    Article  PubMed  CAS  Google Scholar 

  • Duchateau J & Hainaut K (1987). Electrical and mechanical failure during sustained and intermittent contractions in humans. Journal of Applied Physiology 58, 942–947.

    Google Scholar 

  • Dulhunty AF (1980). Potassium contractures and mechanical activation in mammalian skeletal muscles. Journal of Membrane Biology 57, 223–233.

    Article  PubMed  CAS  Google Scholar 

  • Dulhunty AF (1982). Effects of membrane potential on mechanical activation in skeletal muscle. Journal of General Physiology 79, 233–251.

    Article  PubMed  CAS  Google Scholar 

  • Dulhunty AF (1992). The voltage-activation of contraction in skeletal muscle. Progress in Biophysics and Molecular Biology 57, 181–223.

    Article  PubMed  CAS  Google Scholar 

  • Dulhunty AF & Gage PW (1983). Asymmetrical charge movement in slow-and fast-twitch mammalian muscle fibres in normal and paraplegic rats. Journal of Physiology (London) 341, 213–231.

    CAS  Google Scholar 

  • Dulhunty AF & Gage PW (1985). Excitation-contraction coupling and charge movement in denervated rat extensor digitorum longus and soleus muscles. Journal of Physiology (London) 358, 75–89.

    CAS  Google Scholar 

  • Enoka RM, Rankin LL, Stuart DG & Volz KA (1989). Fatigability of rat hindlimb muscle: associations between electromyogram and force during a fatigue test. Journal of Physiology (London) 408, 251–270.

    CAS  Google Scholar 

  • Enoka RM & Stuart DG (1992). Neurobiology of muscle fatigue. Journal of Applied Physiology 72, 1631–1648.

    Article  PubMed  CAS  Google Scholar 

  • Fuglevand AJ, Winter DA, Patla AE & Stashuk D (1992). Detection of motor unit action potentials with surface electrodes: influence of electrode size and spacing. Biological Cybernetics 67, 143–153.

    Article  PubMed  CAS  Google Scholar 

  • Fuglevand AJ, Zackowski KM, Huey KA & Enoka RM (1993). Impairment of neuromuscular propagation during human fatiguing contractions at submaximal forces. Journal of Physiology (London) 460, 549–572.

    CAS  Google Scholar 

  • Fujimoto T & Nishizono H (1993). Involvement of membrane excitation failure in fatigue induced by intermittent submaximal voluntary contraction of the first dorsal interosseous muscle. Journal of Sports Medicine and Physical Fitness 33, 107–117.

    PubMed  CAS  Google Scholar 

  • Garcia MDC, Gonzalez-Serratos H, Morgan JP, Perreault CL & Rozycka M (1991). Differential activation of myofibrils during fatigue in phasic skeletal muscle cells. Journal of Muscle Research and Cell Motility 12, 412–424.

    Article  PubMed  CAS  Google Scholar 

  • Gardiner PF & Olha AE (1987). Contractile and electromyographic characteristics of rat plantaris motor unit types during fatigue in situ. Journal of Physiology (London) 385, 13–34.

    CAS  Google Scholar 

  • Gath I & Stålberg E (1978). The calculated radial decline of the extracellular action potential compared with in situ measurements in the human brachial biceps. Electroencephalography and Clinical Neurophysiology 44, 547–552.

    Article  PubMed  CAS  Google Scholar 

  • Hamm TM, Reinking RM & Stuart DG (1989). Electromyographic responses of mammalian motor units to a fatigue test. Electromyography and Clinical Neurophysiology 29, 485–494.

    PubMed  CAS  Google Scholar 

  • Hanson J (1974). The effects of repetitive stimulation on the action potential and the twitch of rat muscle. Acta Physiologica Scandinavica 90, 387–400.

    Article  PubMed  CAS  Google Scholar 

  • Hanson J & Persson A (1971). Changes in the action potential and contraction of isolated frog muscle after receptive stimulation. Acta Physiologica Scandinavica 81, 340–348.

    Article  PubMed  CAS  Google Scholar 

  • Heistracher P & Hunt CC (1969). The relation of membrane changes to contraction in twitch muscle fibres. Journal of Physiology (London) 201, 589–611.

    CAS  Google Scholar 

  • Hirche H, Schumacher E & Hagemann H (1980). Extracellular K+ concentration and K+ balance of the gastrocnemius of the dog during exercise. Pflügers Archiv 387, 231–237.

    Article  PubMed  CAS  Google Scholar 

  • Hodgkin AL & Horowicz P (1960). Potassium contractures in single muscle fibres. Journal of Physiology (London) 153, 386–403.

    CAS  Google Scholar 

  • Jones DA (1981). Muscle fatigue due to changes beyond the neuromuscular junction. In: Edwards RHT (ed.), Human Muscle Fatigue: Physiological Mechanisms. Ciba Foundation Symposium, pp. 178–196. London: Pitman Medical.

    Google Scholar 

  • Jones DA & Bigland-Ritchie B (1986). Electrical and contractile changes in muscle fatigue. In: Saltin B (ed.), International Series on Sport Sciences. Biochemistry of Exercise VI, pp. 377–392. Champaign IL: Human Kinetics.

    Google Scholar 

  • Juel C (1986). Potassium and sodium shifts during in vitro isometric muscle contraction, and the time course of the ion-gradient recovery. Pflügers Archives 406, 458–463.

    Article  CAS  Google Scholar 

  • Juel C (1988). Muscle action potential propagation velocity changes during activity. Muscle & Nerve 11, 714–719.

    Article  CAS  Google Scholar 

  • Kovács L, Ríos E & Schneider MF (1979). Calcium transients and intramembrane charge movement in skeletal muscle fibres. Nature 279, 391–396.

    Article  PubMed  Google Scholar 

  • Kranz H, Williams AW, Cassel J, Caddy DJ & Silberstein RB (1983). Factors determining the frequency content of the electromyogram. Journal of Applied Physiology 55, 392–399.

    PubMed  CAS  Google Scholar 

  • Kugelberg E & Lindegren B (1979). Transmission and contraction fatigue of rat motor units in relation to succinate dehydrogenase activity of motor unit fibers. Journal of Physiology (London) 288, 285–300.

    CAS  Google Scholar 

  • Kwiecinski H, Lehmann-Horn F & Rudel R (1984). The resting membrane parameters of human intercostal muscle at low, normal, and high extracellular potassium. Muscle & Nerve 7, 60–65.

    Article  CAS  Google Scholar 

  • Lännergren J & Westerblad H (1986). Force and membrane potential during and after fatiguing, continuous high-frequency stimulation of single Xenopus muscle fibers. Acta Physiologica Scandinavica 128, 359–368.

    Article  PubMed  Google Scholar 

  • Lännergren J & Westerblad H (1987). Action potential fatigue in single skeletal muscle fibres of Xenopus. Acta Physiologica Scandinavica 129, 311–318.

    Article  PubMed  Google Scholar 

  • Larsson L, Edström L, Lindegren B, Gorza L & Schiaffino, S (1991). MHC composition and enzyme-histochemical and physiological properties of a novel fast-twitch motor unit type. American Journal of Physiology 261, C93–C101.

    PubMed  CAS  Google Scholar 

  • Light PE, Comtois AS & Renaud JM (1994). The effect of glibenclamide on frog skeletal muscle: evidence for KATP + channel activation during fatigue. Journal of Physiology (London) 475, 495–507.

    CAS  Google Scholar 

  • Lindinger MI & Heigenhauser GJF (1991). The roles of ion fluxes in skeletal muscle fatigue. Canadian Journal of Physiology and Pharmacology 69, 246–253.

    Article  PubMed  CAS  Google Scholar 

  • Lindström L, Kadefors R & Petersén I (1977). An electromyographic index for localized muscle fatigue. Journal of Applied Physiology 43, 750–754.

    PubMed  Google Scholar 

  • Lüttgau HC (1963). The action of calcium ions on potassium contractures of single muscle fibres. Journal of Physiology (London) 168, 679–697.

    Google Scholar 

  • Lüttgau HC (1965). The effect of metabolic inhibitors on the fatigue of the action potential in single muscle fibres. Journal of Physiology (London) 178, 45–67.

    Google Scholar 

  • Lüttgau HC & Oetliker H (1968). The action of caffeine on the activation of the contractile mechanism in striated muscle fibres. Journal of Physiology (London) 194, 51–74.

    Google Scholar 

  • Metzger JM & Fitts RH (1986). Fatigue from high-and low-frequency muscle stimulation: role of sarcolemma action potentials. Experimental Neurology 93, 320–333.

    Article  PubMed  CAS  Google Scholar 

  • Pagala M, Ravindran K, Amaladevi B, Namba T & Grob D (1994). Potassium and caffeine contractures of mouse muscles before and after fatiguing stimulation. Muscle & Nerve 17, 852–859.

    Article  CAS  Google Scholar 

  • Radicheva N, Gerilovsky L & Gydikov A (1986). Changes in the muscle fibre extracellular action potentials in long-lasting (fatiguing) activity. European Journal of Applied Physiology 55, 545–552.

    Article  CAS  Google Scholar 

  • Reinking RM, Stephens JA & Stuart DG (1975). The motor units of cat medial gastrocnemius: problem of their categorisation on the basis of mechanical properties. Experimental Brain Research 23, 301–313.

    Article  CAS  Google Scholar 

  • Sandercock TG, Faulkner JA, Albers JW & Abbrecht PH (1985). Single motor unit and fiber action potentials during fatigue. Journal of Applied Physiology 58, 1073–1079.

    PubMed  CAS  Google Scholar 

  • Sandow A (1952). Excitation-contraction coupling in muscular response. Yale Journal of Biology and Medicine 25, 176–201.

    PubMed  CAS  Google Scholar 

  • Schneider MF & Chandler WK (1973). Voltage dependent charge movement in skeletal muscle: a possible step in excitation-contraction coupling. Nature 242, 244–246.

    Article  PubMed  CAS  Google Scholar 

  • Sjøgaard G (1990). Exercise-induced muscle fatigue: the significance of potassium. Acta Physiologica Scandinavica Supplement 593, 1–63.

    Google Scholar 

  • Sjøgaard G (1991). Role of exercise-induced potassium fluxes underlying muscle fatigue: a brief review. Canadian Journal of Physiology and Pharmacology 69, 238–245.

    Article  PubMed  Google Scholar 

  • Vyskocil F, Hník P, Rehfeldt H, Vejsada R & Ujec E (1983). The measurement of Ke+ concentration changes in human muscles during volitional contractions. Pflügers Archiv 399, 235–237.

    Article  PubMed  CAS  Google Scholar 

  • Westerblad H & Lännergren J (1986). Force and membrane potential during and after fatiguing, intermittent tetanic stimulation of single Xenopus muscle fibers. Acta Physiologica Scandinavica 128, 369–378.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media New York

About this chapter

Cite this chapter

Fuglevand, A.J. (1995). The Role of the Sarcolemma Action Potential in Fatigue. In: Gandevia, S.C., Enoka, R.M., McComas, A.J., Stuart, D.G., Thomas, C.K., Pierce, P.A. (eds) Fatigue. Advances in Experimental Medicine and Biology, vol 384. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-1016-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-1016-5_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-1018-9

  • Online ISBN: 978-1-4899-1016-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics