Skip to main content

The Role of Intracellular Acidosis in Muscle Fatigue

  • Chapter
Fatigue

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 384))

Abstract

Muscle fatigue is often accompanied by an intracellular acidosis of variable size. The variability reflects the involvement of different metabolic pathways, the presence or absence of blood flow and the effectiveness of pH-regulating pathways. Intracellular acidosis affects many aspects of muscle cell function; for instance it reduces maximal Ca2+-activated force and Ca2+ sensitivity, slows the maximal shortening velocity and prolongs relaxation. However, acidosis is not the only metabolic change in fatigue which causes each of the above, and there are important aspects of muscle fatigue (e.g., the failure of Ca2+ release) which do not appear to be caused by acidosis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams GR, Fisher MJ & Meyer RA (1991). Hypercapnic acidosis and increased H2PO4 concentration do not decrease force in cat skeletal muscle. American Journal of Physiology 260, C805–C812.

    PubMed  CAS  Google Scholar 

  • Allen DG, Lee JA & Westerblad H (1989). Intracellular calcium and force in isolated single muscle fibres from Xenopus. Journal of Physiology (London) 415, 433–458.

    CAS  Google Scholar 

  • Amorena CE, Wilding TJ, Manchester JK & Roos A (1990). Changes in intracellular pH caused by high K+ in normal and acidified frog muscle. Journal of General Physiology 96, 959–972.

    Article  PubMed  CAS  Google Scholar 

  • Blanchard EM, Pan BS & Solaro RJ (1984). The effect of acidic pH on the ATPase activity and troponin Ca2+ binding of rabbit skeletal myofilaments. Journal of Biological Chemistry 259, 3181–3186.

    PubMed  CAS  Google Scholar 

  • Bremel RD & Weber A (1972). Cooperation within actin filaments in vertebrate skeletal muscle. Nature 238, 97–101.

    CAS  Google Scholar 

  • Cady EB, Elshove E, Jones DA & Moll A (1989). The metabolic causes of slow relaxation in fatigued human skeletal muscle. Journal of Physiology (London) 418, 327–337.

    CAS  Google Scholar 

  • Chasiotis D, Sahlin K & Hultman E (1982). Regulation of glycogenolysis in human muscles at rest and during exercise. Journal of Applied Physiology 53, 708–715.

    Article  PubMed  CAS  Google Scholar 

  • Cooke R, Franks K, Luciani GB & Pate E (1988). The inhibition of rabbit skeletal muscle contraction by hydrogen ion and phosphate. Journal of Physiology (London) 395, 77–97.

    CAS  Google Scholar 

  • Cooke R & Pate E (1985). The effects of ADP and phosphate on the contraction of muscle fibers. Biophysical Journal 48, 789–798.

    Article  PubMed  CAS  Google Scholar 

  • Curtin NA (1987). Intracellular pH and buffer power of type 1 and 2 fibres from skeletal muscle of Xenopus laevis. Pflügers Archiv 408, 386–389.

    Article  PubMed  CAS  Google Scholar 

  • Curtin NA & Edman KAP (1994). Force-velocity relation for frog muscle fibres: effects of moderate fatigue and of intracellular acidification. Journal of Physiology (London) 475, 483–494.

    CAS  Google Scholar 

  • DeHaan A, Jones DA & Sargeant AJ (1989). Changes in velocity of shortening, power output and relaxation rate during fatigue of rat medial gastrocnemius muscle. Pflügers Archiv 413, 422–428.

    Article  CAS  Google Scholar 

  • Eberstein A & Sandow A (1963). Fatigue mechanisms in muscle fibers. In: Gutman E, Hink P (eds.), The Effect of Use and Disuse on Neuromuscular Functions, pp. 515–526. Amsterdam: Elsevier.

    Google Scholar 

  • Edman KAP & Lou F (1990). Changes in force and stiffness induced by fatigue and intracellular acidification in frog muscle fibres. Journal of Physiology (London) 424, 133–149.

    CAS  Google Scholar 

  • Edman KAP & Mattiazzi AR (1981). Effects of fatigue and altered pH on isometric force and velocity of shortening at zero load in frog muscle fibres. Journal of Muscle Research and Cell Motility 2, 321–334.

    Article  PubMed  CAS  Google Scholar 

  • Fabiato A & Fabiato F (1978). Effects of pH on the myofilaments and the sarcoplasmic reticulum of skinned cells from cardaic and skeletal muscles. Journal of Physiology (London) 276, 233–255.

    CAS  Google Scholar 

  • Fitts RH (1994). Cellular mechanisms of muscle fatigue. Physiological Reviews 74, 49–94.

    Article  PubMed  CAS  Google Scholar 

  • Fryer MW, Owen VJ, Lamb GD & Stephenson DG (1995). Effects of creatine phosphate and Pi on Ca2+ movements and tension development in rat skinned skeletal muscle fibres. Journal of Physiology (London) 482, 123–140.

    CAS  Google Scholar 

  • Godt RE & Nosek TM (1989). Changes of intracellular milieu with fatigue or hypoxia depress contraction of skinned rabbit skeletal and cardiac muscle. Journal of Physiology (London) 412, 155–180.

    CAS  Google Scholar 

  • Güth K & Potter JD (1987). Effect of rigor and cycling cross-bridges on the structure of troponin C and on the Ca2+ affinity of the Ca2+-specific regulatory sites in skinned rabbit psoas fibers. Journal of Biological Chemistry 262, 13627–13635.

    PubMed  Google Scholar 

  • Hill AV & Kupalov P (1929). Anaerobic and aerobic activity in isolated muscles. Proceedings of the Royal Society (Series B) 105, 313–322.

    Article  CAS  Google Scholar 

  • Juel C (1988). Intracellular pH recovery and lactate efflux in mouse soleus muscles stimulated in vitro: the involvement of sodium/proton exchange and a lactate carrier. Acta Physiologica Scandinavica 132, 363–371.

    Article  PubMed  CAS  Google Scholar 

  • Kentish JC (1991). Combined inhibitory actions of acidosis and phosphate on maximum force production in rat skinned cardiac muscle. Pflügers Archiv 419, 310–318.

    Article  PubMed  CAS  Google Scholar 

  • Kentish JC & Palmer S (1989). Calcium binding to isolated bovine cardiac and rabbit skeletal troponin-C is affected by pH but not by caffeine or inorganic phosphate. Journal of Physiology (London) 417, 160P.

    Google Scholar 

  • Lamb GD, Recupero E & Stephenson DG (1992). Effect of myoplasmic pH on excitation-contraction coupling in skeletal muscle fibres of the toad. Journal of Physiology (London) 448, 211–224.

    CAS  Google Scholar 

  • Lännergren J & Westerblad H (1991). Force decline due to fatigue and intracellular acidification in isolated fibres from mouse skeletal muscle. Journal of Physiology (London) 434, 307–322.

    Google Scholar 

  • Lee JA, Westerblad H & Allen DG (1991). Changes in tetanic and resting [Ca2+]i during fatigue and recovery of single muscle fibres from Xenopus laevis. Journal of Physiology (London) 433, 307–326.

    CAS  Google Scholar 

  • Ma J, Fill M, Knudson M, Campbell KP & Coronado R (1988). Ryanodine receptor of skeletal muscle is a gap junction-type channel. Science 242, 99–102.

    Article  PubMed  CAS  Google Scholar 

  • Mason MJ, Mainwood GW & Thoden JS (1986). The influence of extracellular buffer concentration and propionate on lactate efflux from frog muscle. Pflügers Archiv 406, 472–479.

    Article  PubMed  CAS  Google Scholar 

  • Metzger JM & Moss RL (1987). Greater hydrogen ion induced depression of tension and velocity in skinned single fibres of rat fast than slow muscles. Journal of Physiology (London) 393, 727–742.

    CAS  Google Scholar 

  • Millar NC & Homsher E (1990). The effect of phosphate and calcium on force generation in glycerinated rabbit skeletal muscle fibers. Journal of Biological Chemistry 265, 20234–20240.

    PubMed  CAS  Google Scholar 

  • Nagesser AS, Van Der Laarse WJ & Elzinga G (1993). ATP formation and ATP hydrolysis during fatiguing, intermittent stimulation of different types of single muscle fibres from Xenopus laevis. Journal of Muscle Research and Cell Motility 14, 608–618.

    Article  PubMed  CAS  Google Scholar 

  • Nakamura T & Yamada K (1992). Effects of carbon dioxide on tetanic contraction of frog skeletal muscles studied by phosphorus nuclear magnetic resonance. Journal of Physiology (London) 453, 247–259.

    CAS  Google Scholar 

  • Nassar-Gentina V, Passonneau JV & Rapoport SI (1981). Fatigue and metabolism of frog muscle fibers during stimulation and in response to caffeine. American Journal of Physiology 241, C160–C166.

    PubMed  CAS  Google Scholar 

  • Needham DM (1971). Machina Carnis: The Biochemistry of Muscular Contraction and Its Historical Development. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Orchard CH & Kentish JC (1990). Effects of changes of pH on the contractile function of cardiac muscle. American Journal of Physiology 258, C967–C981.

    PubMed  CAS  Google Scholar 

  • Parkhouse WS (1992). The effects of ATP, inorganic phosphate, protons, and lactate on isolated myofibrillar ATPase activity. Canadian Journal of Physiology and Pharmacology 70, 1175–1181.

    Article  PubMed  CAS  Google Scholar 

  • Persechini A, Stull JT & Cooke R (1985). The effect of myosin phosphorylation on the contractile properties of skinned rabbit skeletal muscle fibers. Journal of Biological Chemistry 260, 7951–7954.

    PubMed  CAS  Google Scholar 

  • Roos A & Boron WF (1981). Intracellular pH. Physiological Reviews 61, 297–434.

    Google Scholar 

  • Sahlin K, Edström L, Sjöholm H & Hultman E (1981). Effects of lactic acid accumulation and ATP decrease on muscle tension and relaxation. American Journal of Physiology 240, C121–C126.

    PubMed  CAS  Google Scholar 

  • Smith GL, Donoso P, Bauer CJ & Eisner DA (1993). Relationship between intracellular pH and metabolic concentrations during metabolic inhibition in isolated ferret heart. Journal of Physiology (London) 472, 11–22.

    CAS  Google Scholar 

  • Van Der Laarse WJ, Lännergren J & Diegenbach PC (1991). Resistance to fatigue of single muscle fibres from Xenopus related to succinate dehydrogenase and myofibrillar ATPase activities. Experimental Physiology 76, 589–596.

    PubMed  Google Scholar 

  • Vøllestad NK, Sejersted OM, Bahr R, Woods JJ & Bigland-Ritchie B (1988). Motor drive and metabolic responses during repeated submaximal contractions in humans. Journal of Applied Physiology 64, 1421–1427.

    PubMed  Google Scholar 

  • Westerblad H & Allen DG (1991). Changes in myoplasmic calcium concentration during fatigue in single mouse muscle fibres. Journal of General Physiology 98, 615–635.

    Article  PubMed  CAS  Google Scholar 

  • Westerblad H & Allen DG (1992a). Changes of intracellular pH during repeated tetani in single mouse skeletal muscle fibres. Journal of Physiology (London) 449, 49–71.

    CAS  Google Scholar 

  • Westerblad H & Allen DG (1992b). Myoplasmic free Mg2+ concentration during repetitive stimulation of single fibres from mouse skeletal muscle. Journal of Physiology (London) 453: 413–434.

    CAS  Google Scholar 

  • Westerblad H & Allen DG (1992c). Myoplasmic [Mg2+]i concentration in Xenopus muscle fibres at rest, during fatigue and during metabolic blockade. Experimental Physiology 77, 733–740.

    PubMed  CAS  Google Scholar 

  • Westerblad H & Allen DG (1993a). The influence of pH on contraction, relaxation and [Ca2+]i in intact single fibres from mouse muscle. Journal of Physiology (London) 466, 611–628.

    CAS  Google Scholar 

  • Westerblad H & Allen DG (1993b). The role of [Ca2+]i in the slowing of relaxation in fatigued single fibres from mouse skeletal muscle. Journal of Physiology (London) 468, 729–740.

    CAS  Google Scholar 

  • Westerblad H & Lännergren J (1988). The relation between force and intracellular pH in fatigued, single Xenopus muscle fibres. Acta Physiologica Scandinavica 133, 83–89.

    Article  PubMed  CAS  Google Scholar 

  • Westerblad H & Lännergren J (1991). Slowing of relaxation during fatigue in single mouse muscle fibres. Journal of Physiology (London) 434, 323–336.

    CAS  Google Scholar 

  • Westerblad H & Lännergren J (1994). Changes of the force-velocity relation, isometric tension and relaxation rate during fatigue in intact, single fibres of Xenopus skeletal muscle. Journal of Muscle Research and Cell Motility 15, 287–298.

    Article  PubMed  CAS  Google Scholar 

  • Westerblad H, Lee JA, Lännergren J & Allen DG (1991). Cellular mechanisms of fatigue in skeletal muscle. American Journal of Physiology 261, C195–C209.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media New York

About this chapter

Cite this chapter

Allen, D.G., Westerblad, H., Lännergren, J. (1995). The Role of Intracellular Acidosis in Muscle Fatigue. In: Gandevia, S.C., Enoka, R.M., McComas, A.J., Stuart, D.G., Thomas, C.K., Pierce, P.A. (eds) Fatigue. Advances in Experimental Medicine and Biology, vol 384. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-1016-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-1016-5_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-1018-9

  • Online ISBN: 978-1-4899-1016-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics