Skip to main content

Fatigue and the Design of the Respiratory System

  • Chapter
Fatigue

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 384))

  • 1139 Accesses

Abstract

One source of muscle fatigue may be the failure to provide the required oxygen by any step in the oxygen transport cascade or a lack of the necessary machinery to utilize that oxygen. We favor abandoning the concept of a single rate-limiting step for the concept of tuned resistors, each contributing to the overall resistance to oxygen flow. However, because some of these steps have considerably less phenotypic plasticity than others, these are the component parts of the respiratory system that must be built with adequate “reserve” to accommodate adaptive increases in the other steps (Lindstedt et al., 1988; Weibel et al., 1992; Lindstedt et al., 1994). These structures will usually appear to be over built except in those rare individual animals at the species-specific limit of \(\dot V_{O_2 } \) in which these less malleable structures may be limiting.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Dempsey JA, Hanson PG & Henderson KS (1984). Exercise-induced arterial hypoxia in healthy human subjects at sea level. Journal of Physiology (London) 355, 161–175.

    CAS  Google Scholar 

  • Dempsey JA, Johnson BD & Saupe KW (1990). Adaptations and limitations in the pulmonary system during exercise. Chest Supplement 97, 81S–87S.

    Article  CAS  Google Scholar 

  • di Prampero PE (1985). Metabolic and circulatory limitations to \(\dot V_{O_{2^{\max } } } \) at the whole animal level. Journal of Experimental Biololgy 115, 319–331.

    Google Scholar 

  • Gayeski TEJ & Honig CR (1986). O2 gradients from sarcolemma to cell interior in red muscle at maximal \(\dot V_{O_{2^{\max } } } \) American Journal of Physiology 251, H789–H799.

    PubMed  CAS  Google Scholar 

  • Hoppeler H & Lindstedt SL (1985). Malleability of skeletal muscle tissue in overcoming limitations: Structural elements. Journal of Experimental Biology 115, 355–364.

    PubMed  CAS  Google Scholar 

  • Hudlicka O (1985). Development and adaptability of microvasculature in skeletal muscle. Journal of Experimental Biology 115, 215–228.

    PubMed  CAS  Google Scholar 

  • Jones JH, Taylor CR, Lindholm A, Straub R, Longworth KE & Karas RH (1989). Blood gas measurements during exercise: errors due to temperature correction. Journal of Applied Physiology 67, 879–884.

    PubMed  CAS  Google Scholar 

  • Lindstedt SL (1984). Pulmonary transit time and diffusing capacity in mammals. American Journal of Physiology 246, R384–R388.

    PubMed  CAS  Google Scholar 

  • Lindstedt SL & Thomas RG (1994). Exercise performance in mammals: An allometric perspective. In: Jones, JH (ed.) Advances in Veterinary Science and Comparative Medicine 38B, pp 325–348. New York: Academic.

    Google Scholar 

  • Lindstedt SL, Thomas RG & Leith DE (1994). Does peak inspiratory flow contribute to setting \(\dot V_{O_{2^{\max } } } \)? A test of symmorphosis. Respiration Physiology 95, 109–118.

    Article  PubMed  CAS  Google Scholar 

  • Lindstedt SL, Wells DJ, Jones JH, Hoppeler H & Thronson HA, Jr (1988). Limitations to aerobic performance in mammals: Interaction of structure and demand. International Journal of Sports Medicine 9, 210–217.

    Article  PubMed  CAS  Google Scholar 

  • Reichmann H, Hoppeler H, Mathieu-Costello O, von Bergen F & Pette D (1985). Biochemical and ultrastructural changes of skeletal muscle mitochondria after chronic electrical stimulation in rabbits. Pflügers Archiv 404, 1–9.

    Article  PubMed  CAS  Google Scholar 

  • Saltin B & Strange S (1992). Maximal oxygen uptake: “old” and “new” arguments for a cardiovascular limitation. Medicine and Science in Sports and Exercise 24, 30–37.

    Article  PubMed  CAS  Google Scholar 

  • Schaeffer P & Lindstedt S L (1992). Structure function coupling in the fastest contracting vertebrate muscle: the rattlesnake tail shaker muscle. The Physiologist 35, 224 (abstract).

    Google Scholar 

  • Schwerzmann K, Hoppeler H, Kayar SR & Weibel ER (1989). Oxidative capacity of muscle and mitochondria: Correlation of physiological, biochemical, and morphometric characteristics. Proceedings of the National Academy of Sciences 86, 1583–1587.

    Article  CAS  Google Scholar 

  • Stahl WR (1967). Scaling of respiratory variables in mammals. Journal of Applied Physiology 22, 453–460.

    PubMed  CAS  Google Scholar 

  • Suarez RK (1991). Oxidative Metabolism in Hummingbird Flight Muscles. In: Bicudo JEPW (ed.), The Vertebrate Gas Transport Cascade, pp. 279–285. Boca Raton: CBC Press.

    Google Scholar 

  • Turner DL, Hoppeler H, Noti C, Gurtner HP, Gerber H, Schena F, Kayser B & Ferretti G (1993). Limitations to VO2max in humans after blood retransfusion. Respiration Physiology 92, 329–341.

    Article  PubMed  CAS  Google Scholar 

  • Weibel ER, Taylor CR & Hoppeler H (1992). The concept of symmorphosis: A testable hypothesis of structure-function relationship. Proceedings of the National Academy of Sciences, USA 88, 10357–10361.

    Article  Google Scholar 

  • Wells DJ (1990). Hummingbird Flight Physiology: Muscle Performance and Ecological Constraints. Ph.D Dissertation, Univ. Microfilm Int. Cit. No. 9105412. Laramie: University of Wyoming.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media New York

About this chapter

Cite this chapter

Lindstedt, S.L., Hoppeler, H. (1995). Fatigue and the Design of the Respiratory System. In: Gandevia, S.C., Enoka, R.M., McComas, A.J., Stuart, D.G., Thomas, C.K., Pierce, P.A. (eds) Fatigue. Advances in Experimental Medicine and Biology, vol 384. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-1016-5_30

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-1016-5_30

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-1018-9

  • Online ISBN: 978-1-4899-1016-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics