Skip to main content

Perturbation Theory for Systems without Global Action-Angle Coordinates

  • Chapter
Book cover Hamiltonian Mechanics

Part of the book series: NATO ASI Series ((NSSB,volume 331))

  • 330 Accesses

Abstract

Hamiltonian perturbation theory is usually formulated with reference to systems defined in a product space B × T m endowed with a system of action-angle coordinates IB,φ ∈ T m, where B is an open set in R m. This is essentially a ‘local’ formulation since the phase space of an integrable Hamiltonian system can easily fail to have such a product structure in the large, and correspondingly there exists no single ‘global’ system of action-angle coordinates.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Andoyer, H., 1923, Cours de Mécanique Céleste, Gauthier-Villars, Paris.

    MATH  Google Scholar 

  • Arnold, V.I., 1976, Méthodes Mathématiques de la Mécanique Classique, MIR, Moscow.

    MATH  Google Scholar 

  • Benettin, G., and Fassò, F., 1993, Paper in preparation.

    Google Scholar 

  • Coffey, S.L., Deprit, A., and Miller, B.R., 1986, The critical inclination in artificial satellite theory, Cel. Mech. 39:365.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • Cushman, R., 1983, Geometry of the energy momentum mapping of the spherical pendulum, Centrum voor Wiskunde en Informatica Newsletter 1:4.

    MathSciNet  Google Scholar 

  • Cushman, R., 1984, Normal form for hamiltonian vectorfields with periodic flow, in Differential Geometric Methods in Mathematical Physics, S. Sternberg ed., Reidel, Dordrecht.

    Google Scholar 

  • Cushman, R., and Knörrer, H., 1985, The energy-momentum mapping of the Lagrange top, in Differential Geometric Methods in Mathematical Physics, H.D. Doebner and J.D. Henning eds., Lect. Notes Math. No. 1139, Springer Verlag, Berlin.

    Google Scholar 

  • Dazord P., and Delzant T., 1987, Le problème general des variables actions-angles, J. Diff. Geom. 26:223.

    MATH  MathSciNet  Google Scholar 

  • Deprit, A., 1967, Free rotation of a rigid body studied in phase plane, Am. J. Phys. 55:424.

    Article  ADS  Google Scholar 

  • Duistermaat, J.J., 1980, On global action-angle coordinates, Commun. Pure Appl. Math. 33:687.

    Article  MATH  MathSciNet  Google Scholar 

  • Fassò, F., 1991, Fast Rotations of the Rigid Body and Hamiltonian Perturbation Theory. Ph.D. Thesis, SISSA, Trieste.

    Google Scholar 

  • Fassò, F., 1993, Geometry of the symmetric Euler-Poinsot system and Hamiltonian perturbation theory on a manifold. Preprint, University of Trento.

    Google Scholar 

  • Nekhoroshev, N.N., 1972, Action-angle variables and their generalizations. Trudy Moskov. Mat. Obsc. 26:181.

    MATH  MathSciNet  Google Scholar 

  • Nekhoroshev, N.N., 1977, An exponential estimate of the time of stability of nearly integrable Hamiltonian systems. Usp. Math. Nauk. 32:5.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media New York

About this chapter

Cite this chapter

Fassò, F. (1994). Perturbation Theory for Systems without Global Action-Angle Coordinates. In: Seimenis, J. (eds) Hamiltonian Mechanics. NATO ASI Series, vol 331. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-0964-0_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-0964-0_19

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-0966-4

  • Online ISBN: 978-1-4899-0964-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics