Skip to main content

Ion Channels of Unicellular Microbes

  • Chapter
Evolution of the First Nervous Systems

Part of the book series: NATO ASI Series ((NSSA,volume 188))

Abstract

Before the first “nervous system,” there must have been “nervous molecules”. The quintessential nervous molecules are the ion channels. These integral membrane proteins enclose the hydrophilic pathways across the hydrophobic membrane that would be otherwise impenetrable for charged or polar molecules. Since a room without a door is but a tomb, one could argue on first principles that channels probably evolved soon after cell membranes. Arguments and speculations aside, we have now shown that protozoa, yeast, and even bacteria all have ion channels. It appears that all cellular forms of life have ion channels. We are also forced to conclude that they must have evolved very early.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Britten, R. J., and McClure, F. T., 1962, The amino acid pool of Escherichia coli, Bact. Rev. 26:292–335.

    PubMed  CAS  Google Scholar 

  • Christensen, O., 1987, Mediation of cell volume regulation by Ca2+ influx through stretch-activated channels, Nature 330:66–68.

    Article  PubMed  CAS  Google Scholar 

  • Criado, M., and Keller, B. U., 1987, A membrane fusion strategy for single-channel recordings of membranes usually non-accessible to patch-clamp pipette electrodes, FEBS Letters 224:172–176.

    Article  PubMed  CAS  Google Scholar 

  • Delcour, A. H., Martinac, B., Adler, J., and Kung, C., 1989, A modified reconstitution method used in patch-clamp studies of Escherichia coli ion channels, Biophysical J. 56:631–636.

    Article  CAS  Google Scholar 

  • Eckert, R., 1972, Bioelectrical control of ciliary activity, Science 176:473–381.

    Article  PubMed  CAS  Google Scholar 

  • Eckert, R., Naitoh, Y., and Friedman, K., 1972, Sensory mechanisms in Paramecium. I. Two components of the electric response to mechanical stimulation of the anterior surface, J. exp. Biol. 56:683–694.

    PubMed  CAS  Google Scholar 

  • Epstein, W., and Schultz, S. G., 1965, Cation transport in Escherichia coli. V. Regulation of cation content, J. Gen. Physiol. 49:221–234.

    Article  PubMed  CAS  Google Scholar 

  • Falke, L. C., and Misler, S., 1989, Activity of ion channels during volume regulation by clonal N1E115 neuroblastoma cells, Proc. Natl. Acad. Sci. 86:3919–3923.

    Article  PubMed  CAS  Google Scholar 

  • Finkelstein, A., and Cass, A., 1968, Permeability and electrical properties of thin lipid membranes, J. Gen. Physiol. 52:145s–172s.

    Article  CAS  Google Scholar 

  • Forte, M., Guy, H. R., and Mannella, C. A., 1987, Molecular genetics of the VDAC ion channel: structural model and sequence analysis, J. Bioenergetics Biomembranes 19:341–349.

    Article  CAS  Google Scholar 

  • Guharay, F., and Sachs, F., 1985, Mechanotransduction ion channels in chick skeletal muscle: The effects of external pH, J. Physiol. (Lond.) 363:119–134.

    CAS  Google Scholar 

  • Gustin, M. C., Martinac, B., Saimi, Y., Culbertson, M. R., and Kung, C., 1986, Ion channels in yeast, Science 233:1195–1197.

    Article  PubMed  CAS  Google Scholar 

  • Gustin, M. C., Zhou, X.-L., Martinac, B., and Kung, C., 1988, A mechanosensitive ion channel in the yeast plasma membrane, Science 242:762–765.

    Article  PubMed  CAS  Google Scholar 

  • Hall, M. N., and Silhavy, T. J., 1981, Genetic analysis of the major membrane proteins in Escherichia coli, Ann. Rev. Genetics. 15:91–142.

    Article  CAS  Google Scholar 

  • Hamili O. P., Marty, A., Neher, E., Sakmann, B., and Sigworth, F. J., 1981, Improved patch-clamp technique for high-resolution current recording from cell and cell-free membrane patches, Plugers Arch. 391:83–100.

    Google Scholar 

  • Hennessey, T. M., 1987, A novel calcium current is activated by hyperpolarization of Paramecium tetraurelia, Soc. Neurosci. Abs. 13:108.

    Google Scholar 

  • Hille, B., 1984, Ion Channels of Excitable Membranes, Sinauer Assoc. Inc., Sunderland, MA.

    Google Scholar 

  • Hinrichsen, R. D., and Schultz, E. J., 1988, Paramecium: a model system for the study of excitable cells, Trends in Neurosciences 11:27–32.

    Article  PubMed  CAS  Google Scholar 

  • Kennedy, E. P., 1982, Osmotic regulation and the biosynthesis of membrane-derived oligosaccharides in Escherichia coli, Proc. Natl. Acad. Sci. U.S.A. 79:1092–1095.

    Article  PubMed  CAS  Google Scholar 

  • Kim, D., and Gapham, D. E., 1989, Potassium channels in cardiac cells activated by arachidonic acid and phospholipids, Science 242:1174–1176.

    Article  Google Scholar 

  • Kim, D., Lewis, D. L., Graziadei, L., Neer, E. J., Bar-Sagi, D., and Clapham, D. E., 1989, G-protein beta gamma-subunits activate three cardiac muscarinic K+-channel via phospholipase A2, Nature 337:557–560.

    Article  PubMed  CAS  Google Scholar 

  • Kubalski, A., Martinac, B., and Saimi, Y., 1989, Proteolytic activation of a hyperpolarization-and Ca2+-activated K channel in Paramecium,J. Membrane Biol., in press.

    Google Scholar 

  • Laimins, L. A., Rhoads, D. B., and Epstein, W., 1981, Osmotic control of kpd Operon expression in Escherichia coli, Proc. Nail. Acad. Sci. U.S.A. 78:464–468.

    Article  CAS  Google Scholar 

  • le Rudulier, D., Strom, A. R., Dandekar, A. M., Smith, L. T., and Valentine, R. C., 1984, Molecular biology of osmoregulation, Science 224:1064–1068.

    Article  PubMed  Google Scholar 

  • Li, C-Y., Boileau, A. J., Kung, C., and Adler, J., 1988, Osmotaxis in Escherichia coli, Proc. Natl. Acad. Sci. U.S.A. 85:9451–9455.

    Article  PubMed  CAS  Google Scholar 

  • Machemer, H., 1988, in: Paramecium, pp. 186–215 (H.D. Gortz, ed.), Springer-Verlag, Heidelberg.

    Google Scholar 

  • Machemer, H., Ogura, A., 1979, Ionic conductances of membranes in ciliated and deciliated Paramecium, J. Physiol. (Lond.) 296:49–60.

    CAS  Google Scholar 

  • Martinac, B., Buechner, M., Delcour, A. H., Adler, J., and Kung, C., 1987, Pressure-sensitive ion channel in Escherichia coli, Proc. Nail. Acad. Sci. USA. 84:2297–2301.

    Article  CAS  Google Scholar 

  • Martinac, B., Saimi, Y., Gustin, M. C., Culbertson, M. R., Adler, J., and Kung, C., 1988, Ion channels in microbes, Periodicum Biologorum 90:375–384.

    Google Scholar 

  • Massart, J., 1891, Recherches sur les organismes inferieurs, Acad. Roy. de Med. de Belgique 22:148–163.

    Google Scholar 

  • Minorsky, P. V., Zhou, X.-L., Culbertson, M. R., and Kung, C., 1989, A patch damp analysis of a cation-current in the vacuolar membrane of the yeast Saccharomyces, Plant Physiology 89:S–882.

    Google Scholar 

  • Naitoh, Y., and Eckert, R., 1973, Sensory mechanism in Paramecium. II. Ionic basis of the hyperpolarizing mechanoreceptor potential, J. exp. Biol. 59:53–65.

    CAS  Google Scholar 

  • Noda, M., Takahashi, H., Tanabe, T., Toyosato, M., Furutani, Y., Hirose, T., Asai, M., Inayama, S., Miyata, T., and Numa, S., 1982, Primary structure of alpha-subunit precursor of Torpedo californica acetylcholine receptor deduced from cDNA sequence, Nature 299:793–797.

    Article  PubMed  CAS  Google Scholar 

  • Noda, M., Shimizu, S., Tanabe, T., Takai, T., Kayano, T., Ikeda, T., Takahashi, H., Nakayama, H., Kanaoka, Y., Minamino, N., Kangawa, K., Matsuo, H., Raferty, M. A., Hirose, T., Inayama, S., Hayashida, H., Miyata, T., and Numa, S., 1984, Primary structure of Electrophorus electricus sodium channel deduced from cDNA sequence, Nature 312:121–127.

    Article  PubMed  CAS  Google Scholar 

  • Oertel, D., Schein, S. J., and Kung, C., 1977, Separation of membrane currents using a Paramecium mutant, Nature 268:120–124.

    Article  PubMed  CAS  Google Scholar 

  • Oertel, D., Schein, S. J., and Kung, C., 1978, A potassium channel activated by hyperpolarization in Paramecium, J. Membrane Biol. 43:169–185.

    Article  CAS  Google Scholar 

  • Ogura, A., and Machemer, H., 1980, Distribution of mechanoreceptor channels in the Paramecium surface membrane, J. Comp. Physiol. 135(A):233–242.

    Article  CAS  Google Scholar 

  • Ordway, R. W., Walsh, J. V. Jr., and Singer, J. S., 1989, Arachidonic acid and other fatty acids directly activate potassium channels in smooth muscle cells, Science 244:1176–1179.

    Article  PubMed  CAS  Google Scholar 

  • Osborn, M. J., Gander, J. E., Parisi, E., and Carson, J., 1972, Mechanism of assembly of the outer membrane of Salmonella typhimurium, J. Biol. Chem. 247:3962–3972.

    PubMed  CAS  Google Scholar 

  • Papazian, D. M., Schwarz, D. L., Tempel, B. L., Jan, Y. N., and Jan, L. Y., 1987, Sequence of a probable potassium channel component encoded a Shaker locus of Drosophilia, Science 237:749–753.

    Article  PubMed  CAS  Google Scholar 

  • Paul, C., and Rosenbusch, J. P., 1985, Folding patterns of porin and bacteriorhodopsin, EMBO J. 4:1593–1597.

    PubMed  CAS  Google Scholar 

  • Preston, R. R., and Saimi, Y., 1989, Calcium ions and the regulation of motility in Paramecium, in: The Structure and Function of Cilary and Flagellar Surfaces (R. Bloodgood, ed.), Plenum Press, in press.

    Google Scholar 

  • Ramanathan, R., Saimi, Y., Hinrichsen, R., Burgess-Cassler, A., and Kung, C., 1988, A genetic dissection of ion-channel functions in Paramecium, in: Paramecium, pp. 236–253 (H. D. Gortz, ed.), Springer-Verlag, Heidelberg.

    Google Scholar 

  • Rhoads, D. B., Waters, F. B., and Epstein, W., 1976, Cation transport in Escherichia coli. Vm. Potassium transport mutants, J. Gen. Physiol. 67:325–341.

    Article  PubMed  CAS  Google Scholar 

  • Rosenbusch, J. P., 1986, Three-dimensional structure of membrane proteins, in: Bacterial Outer Membranes as Model Systems, pp. 141–162 (M. Inouye, ed.), Wiley, N.Y.

    Google Scholar 

  • Sachs, F., 1988, Mechanical transduction in biological systems, CRC Critical Review Biomedical Engineering 16:141–169.

    CAS  Google Scholar 

  • Saimi, Y., 1986, Calcium-dependent sodium currents in Paramecium: mutational manipulations and effects of hyperdepolarization, J. Membrane. Biol. 92:227–236.

    Article  CAS  Google Scholar 

  • Saimi Y., and Kung, C., 1980, A Ca-induced Na-current in Paramecium, J. exp. Biol. 88:305–325.

    PubMed  CAS  Google Scholar 

  • Saimi Y., and Kung, C., 1987, Behavioral genetics of Paramecium, Ann. Rev. Genetics 21:47–65.

    Article  CAS  Google Scholar 

  • Saimi Y., and Martinac, B., 1989, A calcium-dependent potassium channel in Paramecium studied under patch-clamp, J. Membrane Biol., in press.

    Google Scholar 

  • Saimi, Y., Hinrichsen, R. D., Forte, M., and Kung, C., 1983, Mutant analysis shows that the Ca2+-induced K+ current shuts off one type of excitation in Paramecium, Proc. Natl. Acad. Sci. USA 80:5112–5116.

    Article  PubMed  CAS  Google Scholar 

  • Saimi Y., Martinac, B., Gustin, M. C., Culbertson, M. R., Adler, J., and Kung, C., 1988a, Ion channels in Paramecium, yeast, and Eschrichia coli, Trends in Biochemical Sciences 13:304–309.

    Article  PubMed  CAS  Google Scholar 

  • Saimi Y., Martinac, B., Gustin, M. C., Culbertson, M. J., Adler, J., and Kung, C., 1988b, Ion channels in Paramecium, yeast, and Escherichia coli, Cold Spring Harbor Symposia on Quantitative Biology 53:667–673.

    Article  PubMed  CAS  Google Scholar 

  • Satow Y., and Kung, C., 1974, Genetic dissection of active electrogenesis in Paramecium aurellla, Nature 247:69–71.

    Article  PubMed  CAS  Google Scholar 

  • Satow Y., and Kung, C., 1980a, Membrane currents of pawn mutants of the pwA group in Paramecium tetraurelia, J. exp. Biol. 84:57–71.

    PubMed  CAS  Google Scholar 

  • Satow Y., and Kung, C., 1980b, Ca-induced K+-outward current in Paramecium tetraurelia, J. exp. Biol. 88:293–303.

    PubMed  CAS  Google Scholar 

  • Schwarz, T. L., Tempel, B. L., Papazian, D. M., Jan, Y. N., and Jan, L. Y., 1988, Multiple potassium-channel components are produced by alternative splicing at the Shaker locus in Drosophilia, Nature 331:137–142.

    Article  PubMed  CAS  Google Scholar 

  • Stock, J. B., Rauch, B., and Roseman, S., 1977, Periplasmic space in Salmonella typhimurium and Escherichia coli, J. Bacterial. 262:7850–7861.

    Google Scholar 

  • Tanabe T., Takashima, H., Mikami, A., Flockerzi, V., Takahashi, H., Kangawa, K., Kojima, M., Matsuo, H., Hirose, T., and Numa, S., 1987, Primary structure of the receptor for calcium channel blockers from skeletal muscle, Nature 328:313–318.

    Article  PubMed  CAS  Google Scholar 

  • Yatani, A., Mattera, R., Codina, J., Graf, R., Okabe, K., Padrell, E., Iyengar, R., Brown, A. M., and Birnbaumer, L., 1988, The G protein-gated atrial K+ channel is stimulated by three distince Gi alpha-subunits, Nature 336:680–682.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kung, C. (1989). Ion Channels of Unicellular Microbes. In: Anderson, P.A.V. (eds) Evolution of the First Nervous Systems. NATO ASI Series, vol 188. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-0921-3_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-0921-3_15

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-0923-7

  • Online ISBN: 978-1-4899-0921-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics