Skip to main content

The T5 Base Modulator Hypothesis: A Dynamic Model of T5 Neuron Function in Toads

  • Chapter
Book cover Visuomotor Coordination

Abstract

Prey-catching behavior in toads exhibits flexibility. Toads can be conditioned to regard objects which normally elicit escape behavior as prey. The range of acceptable sizes for prey varies with motivation. In spring, prey recognition is “exchanged” for female recognition introducing mating behavior. To account for this behavioral flexibility within a single dynamic model, T5 neuron function is modeled as a T5 base modulator consisting of two components. The first, called the T5 base, consists of a T5 unit and all of the influences upon it except for thalamic pretectal (TP) inhibition which constitutes the second component. The T5 base modulator is a TP modulated tectal structure in which the T5 base provides a basis for T5 neuron function while TP inhibition modulates that basis to achieve the desired characteristics (subclasses T5.1, T5.2, or T5.3) for an individual T5 neuron at a given time. A T5 neuron thus has the potential, e.g., to be either a prey or mate feature analyzer. In the absence of TP modulation, the T5 base is optimized for recognizing objects that are among the least prey-like objects that T5 neurons analyze. Three mechanisms for achieving this are explored. The T5 base modulator hypothesis does not argue against the division of T5 neurons into subclasses, but instead suggests that these subclasses can be regarded as (more or less) stable states of a modulated system capable of adaptability and changeability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • An der Heiden U, Roth G (1983) A mathematical network model for retino-tectal prey recognition in amphibians. In: Lara R, Arbib MA (eds) Proc of the 2nd workshop on visuomotor coordination in frog and toad: models and experiments. Univ of Massachusetts, COINS Technical Report 83–19, Amherst, MA

    Google Scholar 

  • Andrew AM (1955) Action potentials from the frog colliculus. JPhysiol (Lond)130: 25

    Google Scholar 

  • Antal M, Matsumoto N, Székely G (1986) Tectal neurons of the frog: Intracellular recording and labeling with cobalt electrodes. J Comp Neurol 246: 238–253

    Article  PubMed  CAS  Google Scholar 

  • Backstrom A-C, Hemila S, Reuter T (1978) Directional selectivity and colour coding in the frog retina. Med Bio! 56: 72–83

    CAS  Google Scholar 

  • Barlow HB (1953) Summation and inhibition in the frog’s retina. JPhysio! (Lond)119: 69–88

    Google Scholar 

  • Barlow HB, Levick WR (1965) The mechanism of directionally selective units in rabbit’s retina. J Physiol 178: 477–504

    PubMed  CAS  Google Scholar 

  • Betts B (1988) The toad optic tectum as a recurrent on-center off-surround neural net with quenching threshold. In: Proc of IEEE International Conference on Neural Networks II, pp 47–54

    Google Scholar 

  • Brzoska J, Schneider H (1978) Modification of prey-catching behavior by learning in the common toad (Bufo b bufo L, Ahura, Amphibia): changes in response to visual objects and effects of auditory stimuli. BehavProcess3: 125–136

    Google Scholar 

  • Burghagen H (1979) Der Einfluß von figuralen, visuellen Mustern auf das Beutefangverhalten veischiedenerAnuren. PhD Thesis, Univ of Kassel

    Google Scholar 

  • Carey RG (1975) A quantitative analysis of the distribution of the retinal elements in frogs and toads with special emphasis on the areac retinas. Master’s Thesis, Univ of Massachusetts, Amherst, MA

    Google Scholar 

  • Cervantes-Pérez F, Lara R, Arbib M (1985) A neural model of interactions subserving prey-predator discrimination and size preference in anuran amphibians. JTheorBiol113: 117–152

    Google Scholar 

  • Ebbesson SOE (1987) Prey-catching in toads: an exceptional neuroethological model. A commentary. Behav Brain Sci 10: 375–376

    Article  Google Scholar 

  • Ewert J-P (1968) Der Einfluß von Zwischenhirndefekten auf die Visuomotorik im Beute-und Fluchtverhalten der Erdkröte (Bufo bufo L). Z Vergl Physiol6l: 41–70

    Google Scholar 

  • Ewert J-P (1971) Single unit response of the toad (Bufo americanus) caudal thalamus to visual objects. Z Vergl Physiol 74: 81–102

    Article  Google Scholar 

  • Ewert J-P (1974) The neural basis of visually guided behavior. In: Held R (ed) Recent Progress in Perception. WH Freeman, San Francisco, pp 96–104

    Google Scholar 

  • Ewert J-P (1984) Tectal mechanisms that underlie prey-catching and avoidance behaviors in toads. In:

    Google Scholar 

  • Vanegas H (ed) Comparative neurology of the optic tectum. Plenum, New York, pp 247–416

    Google Scholar 

  • Ewert J-P (1987) Neuroethology of releasing mechanisms: prey-catching in toads. Behav Brain Sci 10: 337–405

    Google Scholar 

  • Ewert J-P, Seelen W v (1974) Neurobiologie und Systemtheorie eines visuellen Muster-Erkennungsmechanismus bei Kröten. Kybernetik 14: 167–183

    Article  PubMed  CAS  Google Scholar 

  • Ewert J-P, Wietersheim A v (1974) Einfluß von Thalamus/Praetectum-Defekten auf die Antwort von Tectum-Neuronen gegenüber bewegten visuellen Mustern bei der Kröte Bufo bufo (L). J Comp Physiol92: 149–160

    Google Scholar 

  • Ewert J-P, Speckhardt I, Amelang W (1970) Visuelle Inhibition und Excitation im Beutefangverhalten der Erdkröte (Bufo bufo L). Z Vergl Physiol 68: 84–110

    Article  Google Scholar 

  • Ewert J-P, Hock FJ, Wietersheim A v (1974) Thalamus/praetectum/tectum: retinale topographie und physiologische Interaktionen bei der Kröte Bufo bufo L. J Comp Physiol92: 343–356

    Google Scholar 

  • Ewert J-P, Borchers H-W, Wietersheim A v (1978) Question of prey feature detectors in the toad’s Bufo bufo (L) visual system: a correlation analysis. J Comp Physiol 126: 43. 47

    Google Scholar 

  • Ewert J-P, Borchers H-W, Wietersheim A v (1979a) Directional sensitivity, invariance and variability of tectal T5 neurons in response to moving configurational stimuli in the toad Bufo bufo (L). J Comp Physiol132:191–201

    Google Scholar 

  • Ewert J-P, Krug H, Schönitz G (1979b) Activity of retinal class R3 ganglion cells in the toad Bufo bufo (L) in response to moving configurational stimuli: influence of the movement direction. J Comp Physiol 129: 211–215

    Article  Google Scholar 

  • Ewert J-P, Burghagen H, Schürg-Pffeifer E (1983) Neuroethological analysis of the innate releasing mechanisms for prey-catching behavior in toads. In: Ewert J-P, Capranica RR, Ingle DJ (eds) Advances in vertebrate neuroethology. Plenum, New York, pp 413–475

    Chapter  Google Scholar 

  • Griisser O-J, Griisser-Cornehls U (1968) Neumphysiologische Grundlagen visueller angeborener Auslösemechanismen beim Frosch. Z Vergl Physiol 59: 1–24

    Article  Google Scholar 

  • Grösser O-J, Grösser-Cornehls U (1976) Neurophysiology of the anuran visual system. In: Llinés R, Precht W (eds) Frog neurobiology. Springer-Verlag, Berlin, Heidelberg, New York, pp 298–385

    Google Scholar 

  • Grüsser-Cornehls U, Langeveld S (1985) Velocity sensitivity and directional selectivity of frog retinal ganglion cells depend on chromaticity of moving stimuli. Brain Behav Evo! 27: 165–185

    Article  Google Scholar 

  • Grüsser-Cornehls U, Saunders RMcD (1981) Response of frog retina ganglion cells to monochromatic spots under photopic conditions. Vision Res21: 1617–1620

    Google Scholar 

  • Heatwole H, Heatwole A (1968) Motivational aspects of feeding behavior in toads. Copeia 4: 692–698

    Article  Google Scholar 

  • Heusser H (1960) Instinkterscheinungen an Kröten unter besonderer Berücksichtigung des Fortpflanzungsinstinktes der Erdkröte (Bufo bufo L). Z Tierpsycho! 17: 67–81

    Google Scholar 

  • Kondrashev SL (1976) Influence of the visual stimulus size on the breeding behavior of anuran males. Akad Nayk Zool J55: 1576–1579

    Google Scholar 

  • Kondrashev SL (1987) Neuroethology and color vision in amphibians. A commentary. Behav Brain Sci 10: 385

    Article  Google Scholar 

  • Kuljis RO, Karten FU (1982) Laminar organization of peptide-like immunoreactivity in the anuran optic tectum. J Comp Neuro/ 212: 188–201

    Article  CAS  Google Scholar 

  • Lara R, Arbib MA (1982) A neural model of interaction between pretectum and tectum in prey selection. Cognition and Brain Theory5(2): 149–171

    Google Scholar 

  • Lam R, Arbib MA (1985) A model of the neural mechanisms responsible for pattern recognition and stimulus specific habituation in toads. Biol Cybern 51: 223–237

    Article  Google Scholar 

  • Lam R, Arbib MA, Cromarty AS (1982) The role of the tectal column in facilitation of amphibian prey-catching behavior a neural model. JNeurosci 2 (4): 521–530

    Google Scholar 

  • Lettvin JY, Maturana HR, McCulloch WS, Pitts WH (1959) What the frog’s eye tells the frog’s brain. Proc Inst Radio Eng47: 1940–1951

    Google Scholar 

  • Maturana HR, Lettvin JY, McCulloch WS, Pitts WH (1960) Anatomy and physiology of vision in the frog. J Gen Physiol 43: 129–175

    Article  PubMed  Google Scholar 

  • Matsumoto N, Schwippert WW, Ewert J-P (1986) Intracellular activity of morphologically identified neurons of the grass frog’s optic tectum in response to moving configurational visual stimuli. J Comp Physiol 159: 721–739

    Article  Google Scholar 

  • Poggio T, Koch C (1987) Synapses that compute motion. Sci Amer256(5): 46–52

    Google Scholar 

  • Reiner A, Karten HJ, Brecha NC (1982) Enkephalin-mediated basal ganglia influences over the optic tectum: immuno-histochemistry of the tectum and the lateral spiriform nucleus in pigeon. J Comp Neurol 208: 37–53

    CAS  Google Scholar 

  • Reuter T, Virtanen K (1976) Color discrimination mechanisms in the retina of the toad (Bufo bufo). J Comp Physio! 109: 337–343

    Article  Google Scholar 

  • Schürg-Pfeiffer E, Ewert J-P (1981) Investigation of neurons involved in the analysis of Gestalt prey features in the frog Rana temporaiia. J Comp Physio! 141: 139–158

    Article  Google Scholar 

  • Stevens RJ (1973) A cholinergic inhibitory system in the frog optic tectum: its role in visual electrical responses and feeding behavior. Brain Res49: 309–321

    Google Scholar 

  • Székely G, L~azdr G (1976) Cellular and synaptic architecture of the optic tectum. In: Llin 1s R, Precht W (eds) Frog neurobiology, Springer-Verlag, Berlin Heidelberg New York, pp 407–434

    Google Scholar 

  • Traud R (1983) Einfluß von visuellen Reizmustern auf die juvenile Erdkröte (Bufo bufo L). PhD Thesis, Univ of Kassel

    Google Scholar 

  • Tsai HJ, Ewert J-P (1987) Edge preference of retinal and tectal neurons in common toads (Bufo bufo) in response to worm-like moving stripes: the question of behaviorally relevant ‘position indicators’. J Comp Physi of 161: 295–304

    Article  CAS  Google Scholar 

  • Wells KD (1977) The social behavior of anuran amphibians. Anim Behav25: 666–693

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer Science+Business Media New York

About this chapter

Cite this chapter

Betts, B. (1989). The T5 Base Modulator Hypothesis: A Dynamic Model of T5 Neuron Function in Toads. In: Ewert, JP., Arbib, M.A. (eds) Visuomotor Coordination. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-0897-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-0897-1_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-0899-5

  • Online ISBN: 978-1-4899-0897-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics