Skip to main content

Cellular Architecture and Connectivity of the Frog’s Optic Tectum and Pretectum

  • Chapter
Visuomotor Coordination

Abstract

The result of studies, in which horseradish peroxidase or cobalt was used to label neurons and fiber tracts in the frog’s brain are summarized in this paper. Focal cobalt injections into various layers of the optic tectum label small groups of neurons which appear as columns formed by dendrites oriented perpendicular to the surface. This arrangement of neurons resembles that of the cortex of mammals. In frogs tectal neurons projecting to the medulla oblongata and the spinal cord were identified as large ganglionic, pyramidal, and large piriform cells with widely arborizing dendritic trees. Large piriform neurons with narrow dendritic trees and small piriform neurons project to the isthmic nucleus. All tectal cell types which project to the medulla, are also efferents for the pretectum and other diencephalic nuclei, but the majority of neurons projecting rostrally are small piriform cells of layer 8. Afferents to the tectum originate bilaterally from the retina, pretectum, and the isthmic nucleus, and ipsilaterally from certain thalamic nuclei, the nucleus profundus lateralis, the anterodorsal and posterodorsal tegmental nuclei, and from the contralateral optic tectum. Retinal and isthmic afferents terminate in the superficial strata of the tectum (layers 8 and 9) and non-retinal afferents distribute in the deep layers (layers 2 to 6). Two nuclei receive retinal afferents in the pretectal area: the nucleus lentiformis mesencephali and the posterior thalamic nucleus. Both nuclei project to the ipsilateral medulla and to both tecta. Non-retinal afferents arrive at the pretectum from the ipsilateral striatum, anterior and lateral thalamic nuclei, pretectal grey, optic tectum and the medullary reticular formation, and from the contralateral superior vestibular nucleus and posterior thalamic nucleus.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Antal M, Matsumoto N, Székely G (1986) Tectal neurons of the frog: intracellular recording and labeling with cobalt electrodes. J Comp Neurol 246: 238–253

    Article  PubMed  CAS  Google Scholar 

  • Arbib MA (1982) Modelling neural mechanisms of visuomotor coordination in frog and toad. In: Amari S, Arbib MA (eds) Competition and cooperation in neural nets. Springer-Verlag, Berlin Heidelberg New York, pp 342–370

    Chapter  Google Scholar 

  • Arbib MA, Lara R (1982) A neural model of the interaction of tectal columns in prey-catching behavior. Bio! Cybern 44: 185–196

    Article  CAS  Google Scholar 

  • Cajal PR y (1946) El cerebros de los batracios. Trab Inst Cajal Invest Bio! 38: 41–111

    Google Scholar 

  • Cajal SR y (1911) Histologie due Systeme nerveux de rhomme et des vertebres. Maloine, Paris

    Google Scholar 

  • Cochran SL, Dieringer N, Precht W (1984) Basic optokinetic-ocular reflex pathways in the frog. J Neurosci 4: 43–57

    PubMed  CAS  Google Scholar 

  • Constantine-Paton M, Law MI (1978) Eye-specific termination bands in tecta of three-eyed frogs. Science 202: 639–641

    Article  PubMed  CAS  Google Scholar 

  • Constantine-Paton M, Pitts EC, Reh TA (1983) The relationship between retinal axon ingrowth, terminal morphology, and terminal patterning in the optic tectum of the frog. J Comp Neural 218: 297–313

    CAS  Google Scholar 

  • Contestabile A (1976) Comparative survey on enzyme localization, ultrastructural arrangement and functional organization in the optic tectum of nonmammalian vertebrates. Experientia (Basel) 32: 1223–1229

    Article  CAS  Google Scholar 

  • Ewert J-P (1971) Single unit responses of the toad’s (Bufo americanus) caudal thalamus to visual objects. Z Vergi Physiol 74: 81–102

    Article  Google Scholar 

  • Ewert J-P (1980) Neuroethology. An introduction to the neurophysiological fundamentals of behavior. Springer-Verlag, Berlin Heidelberg New York

    Google Scholar 

  • Ewert J-P, Burghagen H, Schiirg-Pfeiffer E (1983) Neuroethological analysis of the innate releasing mechanism for prey-catching behavior in toads. In: Ewert J-P, Capranica RR, Ingle DJ (eds) Advances in vertebrate neuroethology. Plenum Press, New York, pp 413–475

    Chapter  Google Scholar 

  • Ewert J-P (1984) Tectal mechanisms that underlie prey-catching and avoidance behaviors in toads. In: Vanegas H (ed) Comparative neurology of the optic tectum. Plenum Press, New York, pp 247–399

    Google Scholar 

  • Finkenstädt T, Adler NT, Allen TO, Ebbesson SOE, Ewert J-P (1985) Mapping of brain activity in mesencephalic and diencephalic structures of toads during presentation of visual key stimuli: a computer assisted analysis of (14C)2DG autoradiographs. J Comp Physio 1156: 433–445

    Article  Google Scholar 

  • Fite KV (1976) (ed) The amphibian visual system: a multidisciplinary approach. Academic Press,New York

    Google Scholar 

  • Gaupp E (1899) Anatomie des Frosches. Vieweg, Braunschweig

    Google Scholar 

  • Gaze RM (1958) The representation of the retina on the optic lobe of the frog. Quart JErp Physiol 43: 209–214

    CAS  Google Scholar 

  • Grobstein P, Comer C, Hollyday M, Archer SM (1978) A crossed isthmotectal projection in Rana pipiens and its involvement in the ipsilateral visuotectal projection. Brain Res 156: 117–123

    Article  PubMed  CAS  Google Scholar 

  • Gruberg ER, Lettvin JY (1980) Anatomy and physiology of a binocular system in the frog Rana pipiens. Brain Res 192: 313–325

    Article  CAS  Google Scholar 

  • Gruberg ER, Udin SB (1978) Topographic projections between the nucleus isthmi and the tectum of the frog Rana pipiens. J Comp Neural 179: 487–500

    Article  CAS  Google Scholar 

  • Griisser O-J, Grässer-Cornehls U (1976) Neurophysiology of the anuran visual system. In: Llinas R, Precht W (eds) Frog neurobiology. Springer-Verlag, Berlin Heidelberg New York, pp 297–385

    Google Scholar 

  • Halpern M (1972) Some connections of the telencephalon of the frog, Rana pipiens. An experimental study. Brain Behav Evol 6: 42–68

    Article  PubMed  CAS  Google Scholar 

  • Herrick CJ (1948) The brain of the tiger salamander. University of Chicago Press, Chicago

    Google Scholar 

  • Ide CF, Fraser SE, Meyer RL (1983) Eye dominance columns from an isogenic double-nasal frog eye. Science 221: 293–295

    Article  CAS  Google Scholar 

  • Inagaki S, Senba E, Shiosaka S, Takagi H, Kawai Y, Takatsuki K, Sakanaka M, Matsuzaki T, Tohyama M (1981) Regional distribution of substance P-like immunoreactivity in the frog brain and spinal cord immunohistochemical analysis. J Comp Neural 201: 243–254

    Article  CAS  Google Scholar 

  • Ingle DJ (1976) Behavioral correlates of central visual function in anurans. In: Llin6s R, Precht W (eds) Frog neurobiology. Springer-Verlag, Berlin Heidelberg New York, pp 435–451

    Google Scholar 

  • Ingle DJ (1983) Brain mechanisms of visual localization by frogs and toads. In: Ewert J-P, Capranica RR, Ingle DJ (eds) Advances in vertebrate neuroethology. Plenum Press, New York, pp 177–226

    Chapter  Google Scholar 

  • Kicliter E (1979) Some telencephalic connections in the frog, Rana pipiens. J Comp Neural 185: 75–86

    Article  CAS  Google Scholar 

  • Kiro CM (1948) A comparative histology of the midbrain of amphibians. In: Collection in memory of AA Zavazzin. USSR Academy of Sciences Press, Moscow, pp 54–80 (in Russian)

    Google Scholar 

  • Kostyk SK, Grobstein P (1987a) Neuronal organization underlying visually elicited prey orienting in the frog. II: Anatomical studies on the laterality of central projections. Neurosci 21: 57–82

    Article  CAS  Google Scholar 

  • Kostyk SK, Grobstein P (1987b) Neuronal organization underlying visually elicited prey orienting in the frog. III: Evidence for the existence of an uncrossed descending tectofugal pathway. Neurosci 21: 83–96

    Article  CAS  Google Scholar 

  • Kuljis RO, Karten HJ (1982) Laminar organization of peptide-like immunoreactivity in the anuran optic tectum. J Comp Neurol 212: 188–201

    Article  PubMed  CAS  Google Scholar 

  • Kuljis RO, Karten HJ (1983) Modifications in the laminar organization of peptide-like immunoreactivity in the anuran optic tectum following retinal deafferentation. J Comp Neurol 217: 239–251

    Article  PubMed  CAS  Google Scholar 

  • Law MI, Constantine-Paton M (1981) Anatomy and physiology of experimentally produced striped tecta. J Neurosci 1: 741–759

    PubMed  CAS  Google Scholar 

  • Lara R, Arbib MA, Cromarty AS (1982) The role of the tectal column in facilitation of amphibian prey-catching behavior, a neural model. JNeurosci 2: 521–530

    CAS  Google Scholar 

  • Lazar Gy (1969) Efferent pathways of the optic tectum in the frog. Acta Biol Acad Sci Hung20: 171–183

    Google Scholar 

  • Laazâr Gy (1978) Application of cobalt-filling technique to show retinal projections in the frog. Neurosci 3: 725–736

    Article  Google Scholar 

  • Lazar Gy (1979) Organization of the frog visual system. In: Lissak K (ed) Recent developments of neurobiology in Hungary. Akademiai Kiado, Budapest, pp 9–50

    Google Scholar 

  • Lâzdr Gy (1984) Structure and connections of the optic tectum. In: Vanegas H (ed) Comparative neurology of the optic rectum. Plenum Press, New York, pp 185–210

    Google Scholar 

  • Lazar Gy, Kozicz T (1988) Neuronal pathways of the lateral forebrain bundle in the frog, Rana esculenta (in preparation)

    Google Scholar 

  • LSzJr Gy, Székely Gy (1967) Golgi studies on the optic center of the frog. JHirnforsch 9: 329–344

    Google Scholar 

  • Lazar Gy, Tompos G (1988) Neuronal connectivity and cell morphology of the frog’s diencephalon. A study with cobalt labeling (in preparation)

    Google Scholar 

  • Ldzgr Gy, Alkonyi B, Tóth P (1983a) Reinvestigation of the role of the accessory optic system and the pretectum in the horizontal head nystagmus of the frog. Lesion experiments. Acta Biol Acad Sci Hung34: 385–393

    Google Scholar 

  • Lazar Gy, Tóth P, Csank Gy, Kicliter E (1983b) Morphology and location of tectal projection neurons in frogs: a study with HRP and cobalt filling. J Comp Neurol 215: 108–120

    Article  Google Scholar 

  • Lettvin JW, Maturana HR, McCulloch WS, Pitts WI-I (1959) What the frog’s eye tells the frog’s brain? Proc IRL 47: 1940–1951

    Article  Google Scholar 

  • Llinas R, Precht W (eds) (1976) Frog neurobiology. Springer-Verlag, Berlin Heidelberg New York Matsumoto N, Bando T, (1980) Excitatory synaptic potentials and morphological classification of tectal neurons of the frog. Brain Res 192: 39. 48

    Google Scholar 

  • Matsumoto DE, Scalia F (1981) Long-term survival of centrally projecting axons in the optic nerve of the frog following destruction of the retina. J Comp Neurol 20: 135–155

    Article  Google Scholar 

  • Matsumoto N, Schwippert WW, Ewert J-P (1986) Intracellular activity of morphologically identified neurons of the grass frog’s optic tectum in response to moving configurational visual stimuli. J Comp Physiol 159: 721–739

    Article  Google Scholar 

  • Maturana HR, Lettvin JY, McCulloch WS, Pitts WH (1960) Anatomy and physiology of vision in the frog (Rana pipiens). J Gen Physiol 43: 129–176

    Article  PubMed  Google Scholar 

  • Merchenthaler I, Liz* Gy, Maderdrut JL (1988) Distribution of proenkephalin-peptides in the brain of Rana esculenta (in preparation)

    Google Scholar 

  • Merchenthaler I, Maderdrut JL, Läzär Gy, Gulyas I, Petrusz P (1987) Immunocytochemical analysis of proenkephalin-derived peptides in the amphibian hypothalamus and optic tectum. Brain Res 416: 219–227

    Article  PubMed  CAS  Google Scholar 

  • Montgomery NM, Fite KV, Grigonis AM (1985) The pretectal nucleus lentiformis mesencephali of Rana pipiens. J Comp Neurol 234: 264–275

    Article  CAS  Google Scholar 

  • Montgomery N,Fite KV, Taylor M, Bengston L (1982) Neural correlates of optokinetic nystagmus in the mesencephalon of Rana pipiens: functional analysis. Brain BehavEvol 21: 137–150

    Google Scholar 

  • Neary TJ, Northcutt RG (1983) Nuclear organization of the bullfrog diencephalon. J Comp Neural 213: 262–278

    Article  CAS  Google Scholar 

  • Northcutt RG (1974) Some histochemical observations on the telencephalon of the bullfrog, Rana catesbeiana. J Comp Neural 157: 379–390

    Article  CAS  Google Scholar 

  • Northcutt RG, Kicliter E (1980) Organization of the amphibian telencephalon. In: Ebbesson SOB (ed) Comparative neurology of the telencephalon. Plenum Press, New York, pp 203–256

    Chapter  Google Scholar 

  • Potter HD (1965) Mesencephalic auditory region of the bullfrog. J Neurophysiol 28: 1132–1154

    PubMed  CAS  Google Scholar 

  • Potter HD (1969) Structural characteristics of cell and fiber population in the optic tectum of the frog (Rana catesbiana). J Comp Neurol 136: 203–232

    Article  CAS  Google Scholar 

  • Potter HD (1972) Terminal arborizations of retinotectal axons in the bullfrog. J Comp Neural 144: 269–284

    Article  CAS  Google Scholar 

  • Röthig P (1927) Beiträge zum Studium des Zentralnervensystems der Wirbeltiere. 11. Über die Faserzüge in Mittelhirn, Kleinhirn, and Medulla oblongata der Urodelen and Anuren. ZMikrAnat Forsch 10: 381–472

    Google Scholar 

  • Rubinson K (1968) Projections of the tectum opticum of the frog. Brain BehavEvo! 1: 529–561

    Article  Google Scholar 

  • Scalia F, Fite KV (1974) A retinotopic analysis of the central connections of the optic nerve in the frog. J Comp Neural 158: 455–478

    Article  CAS  Google Scholar 

  • Scalia F, Gregory K (1970) Retinofugal projections in the frog, location of the postsynaptic neurons. Brain Behav Evol 3: 16–29

    Article  PubMed  CAS  Google Scholar 

  • Setalo G, Székely G (1967) The presence of membrane specializations indicative of somato-dendritic synaptic junctions in the optic tectum of the frog. Erp Brain Res 4: 237–242

    CAS  Google Scholar 

  • Sood PP (1978) Chemoarchitectonics of the optic tectum of frogs (Rana tigrina). Cell Mol Dial 23: 195–205

    CAS  Google Scholar 

  • Sperry RW (1943) Effect of 180° degree rotation of the retinal field on visuomotor coordination. J Bxp Zoo! 92: 263–279

    Article  Google Scholar 

  • Sperry RW (1944) Optic nerve regeneration with return of vision in anurans. JNeurophysiol 7: 57–71

    Google Scholar 

  • Sperry RW (1945) Restortion of vision after crossing the optic nerves and after contralateral transplantation of eye. JNeurophysiol 8: 15–29

    Google Scholar 

  • Straznicky C, Tay D, Hiscock J (1980) Segregation of optic fibre projections into eye-specific bands in dually innervated tecta in Xenopus. Neurose! Lett 19: 131–136

    Article  CAS  Google Scholar 

  • Ströer WFH (1940) Zur vergleichenden Anatomie des primären optischen System bei Wirbeltieren. Z Anat Entwickl Gesch 110: 301–321

    Article  Google Scholar 

  • Székely G, Läzär Gy (1976) Cellular and synaptic architecture of the optic tectum. In: Llinäs R, Precht W (eds) Frog neurobiology. Springer-Verlag, Berlin Heidelberg New York, pp 407–434

    Chapter  Google Scholar 

  • Székely G, Setalo G, Läzär Gy (1973) Fine structure of the frog’s optic tectum: optic fibre termination layers. JHirnforsch 14: 189–225

    Google Scholar 

  • Takagi S, Tsuji T, Amagai T, Takamatsu T, Fujisawa H (1987) Specific cell surface labels in the visual centers of Xenopus laevis tadpole identified using monoclonal antibodies. Develop Biol 122: 90–100 T

    Google Scholar 

  • enDonkelaar HJ, de Boer-van Huizen R, Schouten FTM, Eggen SJH (1981) Cells of origin of descending pathways to the spinal cord in the clawed toad (Xenopus laevis). Neurosci 6: 2297–2312

    Google Scholar 

  • Toth P, Csank Gy, LizOr Gy (1985) Morphology of the cells of origin of descending pathways to the spinal cord in Rana esculents A tracing study using cobaltic-lysine complex. JHirnforsch 26: 365–383

    CAS  Google Scholar 

  • Trachtenberg MC, Ingle DJ (1974) Thalamo-tectal projection in the frog. Brain Res 79: 419–430

    Article  PubMed  CAS  Google Scholar 

  • Vesselkin NP, Ermakova TV, Kenigfest B, Goikovic M (1980) The striatal connections in frog Rana temporaiia: an HRP study. JHimforsch 21: 381–390

    CAS  Google Scholar 

  • Weerasuriya A (1983) Snapping in toads: some aspects of sensory-motor interfacing and motor pattern generation. In: Ewert J-P, Capranica RR, Ingle DJ (eds) Advances in vertebrate neuroethology. Plenum Press, New York, pp 613–626

    Google Scholar 

  • Weerasuriya A, Ewert J-P (1981) Prey-selective neurons in the toad’s optic tectum and sensorimotor interfacing: HRP studies and recording experiments. J Comp Physio1 144: 429–434

    Article  Google Scholar 

  • Wilczinsky W, Northcutt RG (1977) Afferents to the optic tectum of the leopard frog: an HRP study. J Comp Neural 173: 219–230

    Article  Google Scholar 

  • Wlassak R (1893) Die optischen Leitungsbahnen des Frosches. Arch Anat Physiol (Physiol Abtlg) Suppl: 1–28

    Google Scholar 

  • Yucel YH, Hindelang C, Stoeckel ME, Bonaventure N (1988) GAD immunoreactivity in pretectal and accessory optic nuclei of the frog mesencephalon. Neurosci Lett 84: 1–6

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer Science+Business Media New York

About this chapter

Cite this chapter

Lazar, G. (1989). Cellular Architecture and Connectivity of the Frog’s Optic Tectum and Pretectum. In: Ewert, JP., Arbib, M.A. (eds) Visuomotor Coordination. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-0897-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-0897-1_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-0899-5

  • Online ISBN: 978-1-4899-0897-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics