Skip to main content

Schema Theory as a Common Language to Study Sensori-Motor Coordination

  • Chapter
Visuomotor Coordination

Abstract

Among sciences there is a tendency to generate data and knowledge in one discipline without making it available to other disciplines. We discuss how Arbib’s Schema Theory represents an attempt to solve this isolation problem in Cognitive Science by providing us with a global language explaining cognitive processes at a level that can be used, and understood, within all disciplines of cognitive sciences. In addition, we show how Schema Theory adds a key methodology to the “top-down” approach which allows us to set the stage within the theory-experiment cycle in order to investigate the neural substrate of sensori-motor coordination. We use our analyses of visuomotor coordinations in toads and praying mantises as examples (i) to show the applicability of Schema Theory in the study of what processes should occur within an animal’s brain in order to explain overall behaviors, and (ii) to point out how Schema Theory permits, in a very general way, to work top-down. The ultimate aim is to generate testable hypotheses about the neural mechanisms that underlie behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arbib MA (1972) The metaphorical brain: an introduction to cybernetics as artificial intelligence and brain theory. Wiley Interscience, New York

    Google Scholar 

  • Arbib MA (1981) Perceptual structures and distributed motor control. In: Brooks VB (ed) Handbook of physiology–The nervous system II. Motor control. American Physiological Society Bethesda MD, pp 1449–1480

    Google Scholar 

  • Arbib MA (1985) In search of the person Univ of Massachusetts Press, Amherst MA

    Google Scholar 

  • Arbib MA (1987a) Brains, machines and mathematics Springer-Verlag, Berlin Heidelberg New York

    Google Scholar 

  • Arbib MA (1987b) From schema theory to language. Oxford Univ Press, Oxford New York

    Google Scholar 

  • Arbib MA (1989) The metaphorical brain 2: neural networks and beyond Wiley Interscience, New York (in press)

    Google Scholar 

  • Arbib MA, House D (1985) Depth and detours: an essay on visually guided behavior. COINS Tech Rep 8648, Univ of Mass, Amherst MA

    Google Scholar 

  • Arbib MA, House D (1987) Depth and detours: an essay on visually guided behavior. In: Arbib MA, Hanson AR (eds) Vision, brain, and cooperative compution. A Bradford Book/MIT Press, Cambridge Mass, pp 129–163

    Google Scholar 

  • Brzoska J, Schneider H (1978) Modification of prey-catching behavior by learning in the common toad (Bufo bufo L, Anura, Amphibia); changes in response to visual objects and effects of auditory stimuli. BehavProcesses3: 125–136

    Google Scholar 

  • Camhi JM (1984) Neuroethology. Sinauer Ass Inc, Sunderland MA

    Google Scholar 

  • Cervantes F, Lam R, Arbib M (1983) A neural model of interactions subserving prey-predator discrimination and size preference in anuran amphibia. In: Lara R, Arbib MA (eds) Proceedings of the second workshop on visuomotor coordination in frog and toad: models and experiments COINS Tech Rep 83–19, Univ of Mass, Amherst MA

    Google Scholar 

  • Cervantes-Pérez F (1985) Modelling and analysis of neural networks in the visuomotor system of anura amphibia. COINS Tech Rep 85–27, Univ of Mass at Amherst MA

    Google Scholar 

  • Cervantes-Pérez F, Lam R, Arbib MA (1985) A neural model of interactions subserving prey-predator discrimination and size preference in anuran amphibia. J Timor Bio1113: 117–152

    Google Scholar 

  • Chomsky N (1956) Three models of the description of language. Proc Symp Inf Theory. IRE Transactions on Information TheoryIT-2(3): 113–124

    Google Scholar 

  • Collett T (1983) Picking a route: do toads follow rules or make plans? In: Ewert J-P

    Google Scholar 

  • Capranica RR, Ingle DJ (eds) Advances in vertebrate neuroethology Plenum Press, London New York, pp 321–330

    Google Scholar 

  • Cott HB (1936) The effectiveness of protective adaptations in the hive-bee, illustrated by experiments on the feeding reactions, habit formation and memory of the common toad (Bufo bufo bufo). Proc Zoo! Soc (London) 1: 113–133

    Google Scholar 

  • Craik KJW (1943) The nature of explanation. Cambridge Univ Press, Cambridge MA

    Google Scholar 

  • Crosson F, Sayre K (1967) Philosophy and cybernetics. Univ Notre Dame Press, Notre

    Google Scholar 

  • Dame, Indiana Didday RL (1976) A model of visuomotor mechanisms in the frog optic tectum. Math Biosci 30: 169–180

    Article  Google Scholar 

  • Ewert J-P (1968) Der Einfluß von Zwischenhirndefekten auf die Visuomotorik im Beute-und

    Google Scholar 

  • Fluchtverhalten der Erdkröte (Bufo bufo L). Z Vergl Physiol 61: 41–70

    Google Scholar 

  • Ewert J-P (1976) The visual system of the toad: behavioral and physiological studies on a pattern recognition system. In: Fite KV (ed) The amphibian visual system: a multidisciplinary approach. Academic Press, New York, pp 141–202

    Google Scholar 

  • Ewert J-P (1980) Neunocthology: an introduction to the neurophysiological fundamentals of behavior. Springer-Verlag, Berlin Heidelberg New York

    Google Scholar 

  • Ewert J-P (1984) Tectal mechanisms that underlie prey-catching and avoidance behaviors in toads. In: Vanegas H (ed) Comparative neurology of the optic tectum. Plenum Press, New York, pp 247–416

    Google Scholar 

  • Ewert J-P (1987) Neuroethology of releasing mechanisms: prey-catching in toads. Behav Brain Sci 10: 337–405

    Google Scholar 

  • Ewert J-P, Seelen W v (1974) Neurobiologie und Systemtheorie eines visuellen Mustererkennungsmechanismus bei Kröten. Kybernetik 14: 167–183

    Article  PubMed  CAS  Google Scholar 

  • Ewert J-P, Traud R (1979) Releasing stimuli for antipredator behaviour in the common toad Bufo bufo (L). Behaviour68: 170–180

    Google Scholar 

  • Ewert J-P, Arend B, Becker V, Borchers H-W (1979) Invariants in configurational prey selection by Bufo bufo (L). Brain Behav Evol l6: 38–51

    Google Scholar 

  • Fikes R, Hart P, Nielsson N (1972) Some new directions in robot problem solving. In: Meltzer B, Michi D (eds) Machine intelligence, Vol Z pp 405–430

    Google Scholar 

  • Fite KV, Scalia F (1976) Central visual pathways in the frog. In: Fite KV (ed) The amphibian visual system: a multidisciplinaryapproach. Academic Press, New York, pp 87–118

    Google Scholar 

  • Fu KS (1971) Learning control systems and intelligent control systems: an intersection of artificial intelligence and automatic control. IEEE Transactions on Automatic Control AC-16: 70–72

    Google Scholar 

  • Grüsser O-J, Grüsser-Cornehls U (1976) Neurophyiology of the anuran visual system. In: Llinâs R, Precht W (eds) Frog neurobiology. Springer-Verlag, Berlin Heidelberg New York, pp 298–385

    Google Scholar 

  • Grüsser-Cornehls U (1984) The neurophysiology of the amphibian optic tectum. In: Vanegas H (ed) Comparative neurology of the optic tectum. Plenum Press, New York, pp 211–245

    Google Scholar 

  • Heusser H (1960) Instinkterscheinungen an Erdkröten unter besonderer Berücksichtigung des Fortpflanzungsinstinktes der Erdkröte (Bufo bufoL). ZTierpsychol17: 67–81

    Google Scholar 

  • Iberall T, Lyons D (1984) Towards perceptual robotics. COINS Tech Rep 84–17, Univ of Mass at Amherst MA

    Google Scholar 

  • Ingle DJ (1976) Spatial vision in anurans. In: Fite KV (ed) The amphibian visual system: a multidisciplinary approach. Academic Press, New York, pp 119–140

    Google Scholar 

  • Ingle DJ (1983a) Brain mechanisms of visual localization by frogs and toads. In: Ewert J-P, Capranica RR, Ingle DJ (eds) Advances in vertebrate neuroethology. Plenum Press, London New York, pp 177–226

    Chapter  Google Scholar 

  • Ingle DJ (1983b) Prey-selection in frogs and toads: a neuroethological model. In: Satinoff E, Teitelbaum P (eds) Handbook of behavioral neurobiology, Vol 6 Motivation. Plenum Press, New York, pp 235261

    Google Scholar 

  • Kondrashev SL (1976) Influence of the visual stimulus size on the breeding behavior of anuran males. Akad Nank Zool J55: 1576–1579

    Google Scholar 

  • Kondrashev SL (1987) Neuroethology and color vision in amphibians. A commentary. Behav Brain Sci 10: 385

    Article  Google Scholar 

  • Lara R, Arbib MA (1985) A model of the neural mechanisms responsible for pattern recognition and stimulus-specific habituation in toads. Bio!Cybern51: 223–237

    Google Scholar 

  • Lara R, Cervantes F, Arbib MA (1982) Two-dimensional model of retinal-tectal-pretectal interactions for the control of prey-predator recognition and size preference in amphibia. In: Amari S, Arbib MA (eds) Competition and cooperation in neuronal nets. Springer-Verlag, Berlin Heidelberg New York, pp 371–393

    Chapter  Google Scholar 

  • Lara R, Carmona M, Daza F, Cruz A (1984) A global model of the neural mechanisms responsible for visuomotor coordination in toads. JTheorBiol110: 587–618

    Google Scholar 

  • Lazar G (1984) Structure and connections of the frog optic tectum. In: Vanegas H (ed) Comparative neurology of the optic tectum. Plenum Press, New York, pp 185–210

    Google Scholar 

  • Lee C, Gonzalez R, Fu KD (1983) Tutorial on robotics IEEE Computer Society Press

    Google Scholar 

  • Lock A, Collett T (1979) A toad’s devious approach to its prey: a study of some complex uses of depth vision. J Comp Physiol 131: 179–189

    Article  Google Scholar 

  • McCulloch WS, Pitts WH (1943) A logical calculus of the ideas immanent in nervous activity. Bull Math Biophys5: 115–133

    Google Scholar 

  • Minsky M (1961) Steps toward artificial intelligence. Proc IRE49: 8–30

    Google Scholar 

  • Minsky M (1985) Robotics. Omni Publications International, New York

    Google Scholar 

  • Muntz WRA (1962a) Microelectrode recordings from the diencephalon of the frog, Rana pipiens, and a blue sensitive system. JNeurophysiol25: 699–711

    Google Scholar 

  • Muntz WRA (1962b) Effectiveness of different colours of light in releasing the positive phototactive behavior of frogs, and a possible function of the retinal projection to the diencephalon. J Neurophysiol 25: 712–720

    Google Scholar 

  • Neisser U (1976) Cognition and reality: principles and implications of cognitive psychology. WH Freeman, San Francisco CA

    Google Scholar 

  • Piaget J (1971) Biology and knowledge: an essay on the relations between organic and cognitive processes. Edinburgh University Press, Edinburgh

    Google Scholar 

  • Rosenblueth A, Wiener N, Bigelow J (1943) Behavior, purpose and teleology. Philos Sci 10: 18–24

    Article  Google Scholar 

  • Roth G, Jordan M (1982) Response characteristics and stratification of tectal neurons in the toad Bufo bufo (L). Exp Brain Res 45: 393–398

    Article  PubMed  CAS  Google Scholar 

  • Rumelhart DE, McClelland JL (1986) (eds) Parallel distributed processing. Explorations in the microstructures of cognition. MIT Press, Cambridge MA

    Google Scholar 

  • Scalia F, Fite KV (1974) A retinotopic analysis of the central connections of the optic nerve of the frog. J Comp Neural 158: 455–478

    Article  CAS  Google Scholar 

  • Schürg-Pfeiffer E, Ewert J-P (1981) Investigations of neurons involved in the analysis of Gestalt prey features in the frog Rana temporaria. J Comp Physio1141: 139–152

    Google Scholar 

  • Simon HA (1980) Cognitive science: the newest science in the artificial. Cognitive Sci 4: 33–46

    Article  Google Scholar 

  • Székely G, Lazar G (1976) Cellular and synaptic architecture of the optic tectum. In: Llinas R, Precht W (eds) Frog neurobiology. Springer-Verlag, Berlin Heidelberg New York, pp 407–434

    Chapter  Google Scholar 

  • Wiener N (1948) Cybernetics: or control and communication in the animal and the machine. The Technology Press and Wiley, New York

    Google Scholar 

  • Yankelevich G, Méndez A (1986) Ensayos en interciencia. UNAM Press, México

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer Science+Business Media New York

About this chapter

Cite this chapter

Cervantes-Perez, F. (1989). Schema Theory as a Common Language to Study Sensori-Motor Coordination. In: Ewert, JP., Arbib, M.A. (eds) Visuomotor Coordination. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-0897-1_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-0897-1_14

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-0899-5

  • Online ISBN: 978-1-4899-0897-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics