Skip to main content

Invariances in Pattern Recognition

  • Chapter
Visuomotor Coordination
  • 126 Accesses

Abstract

Humans and animals can recognize objects independent of object position in the visual field, largely independent of viewing angle and distance, and even independent of considerable variations in object shape. For object classification in the visual system, a comparison of sensory information with data in memory is required. Due to the large number of possible retinal pictures that can represent members of the same object class and even one individual object, such comparison is only feasible if an efficient object description can be generated that is object specific and invariant to changes in “non-essential” parameters. Of particular interest for models of invariance operations in the CNS are shift-invariant transforms. Shift-invariance is a primary invariance and other invariances can be derived from it. Size- and rotation-invariance, e.g., can be realized via a shift-invariance mechanism in combination with a logarithmic polar coordinate transform. With some approximations, the mapping of visual space to area 17 in the visual cortex of primates can be described by a logarithmic polar coordinate transform. Models of size-invariant processing in the CNS based on this mapping function have been proposed. In this paper, concepts for the generation of shift-, size-, and rotation-invariant pattern representations in the visual system are discussed, and a critical evaluation of their advantages, drawbacks, and neurophysiological implications will be given. Particularly, the paper will focus on two basic problems: (a) Neural networks are not well suited to perform exact arithmetic operations, as required in many models. A shift-invariant transform will be described that puts minimal demands on the neural transfer function. (b) Invariance operations generally require that the object has been separated from the background. Our model of region labeling via correlated neural activities preserves individual object contributions in composite pattern transforms, and is thus able to cope with the problem of figure/ground separation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Albrecht DG, De Valois RL, Thorell LG (1981) Visual cortical neurons: are bars or gratings the optimal stimuli? Science 207: 88–90

    Article  Google Scholar 

  • Allmann JH, Kaas JH (1971) Representation of the visual field in striate and adjoining cortex of the owl monkey (Aotus trivirgatus). Brain Res 35: 89–106

    Article  Google Scholar 

  • Altes RA (1978) The Fourier-Mellin transform and mammalian hearing. JAcoust Soc Amer 63: 174–183

    Article  CAS  Google Scholar 

  • Altmann J, Reitboeck HJ (1984) A fast correlation method for scale-and translation-invariant patterns recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence PAMI6: 46–57

    Google Scholar 

  • Blakemore C, Campbell FW (1969) On the existence of neurons in the human visual system selectively sensitive to the orientation and size of retinal images. JPhysiol203: 237–260

    Google Scholar 

  • Bracewell R (1965) The Fourier transform and its applications. McGraw-Hill Book Comp, New York Burkhardt H, Mueller X (1980) On invariant sets of a certain class of fast translation-invariant transforms. IEEE Trans ASSP 28: 517–523

    Google Scholar 

  • Campbell FW, Robson JG (1968) Application of Fourier analysis to the visiblity of gratings. JPhysio1197: 551–566

    Google Scholar 

  • Campbell FW, Cooper FG, Enroth-Cugell C (1969) The spatial selectivity of the visual cells of the cat. J Physiol 203: 223–235

    PubMed  CAS  Google Scholar 

  • Campbell FW, Howell ER, Robson JG (1971) The appearance of gratings with and without the fundamental Fourier component. JPhysioI217: 17–18

    Google Scholar 

  • Casasent D, Psaltis D (1976) Scale invariant optical correlation using Mellin transforms. Opt Commun 17: 59–63

    Article  Google Scholar 

  • Casasent D, Psaltis D (1977) New optical transforms for pattern recognition. Proc IEEE 65: 77–84 Cavanagh P (1981) Size invariance: reply to Schwartz. Perception 10: 469–474

    Google Scholar 

  • Cavanagh P (1982) Functional size invariance is not provided by the cortical magnification factor. Vision Res 22: 1409–1412

    Article  PubMed  CAS  Google Scholar 

  • Cavanagh P (1985) Local log polar frequency analysis in the striate cortex as a basis for size and orientation invariance. In: Rose D, Dobson VG (eds) Models of the visual cortex John Wiley, Chichester, pp 85–95

    Google Scholar 

  • Cowey A (1964) Projection of the retina onto striate and prestriate cortex in the squirrel monkey (Saimiri sciureus). JNeurophysiol27: 366–393

    Google Scholar 

  • Daniel PM, Whitteridge D (1961) The representation of the visual field on the cerebral cortex in monkeys. JPhysio1159: 203–221

    Google Scholar 

  • Daugman, JG (1985) Representational issues and local filter models of two-dimensional spatial visual encoding. In: Rose D, Dobson VG (eds) Models of the visual cortex. John Wiley, Chichester, pp 96–107

    Google Scholar 

  • DeValois RL, Albrecht DG, Thorell LG (1978) Cortical cells: bar and edge detectors, or spatial frequency filters? In: Cool SJ, Smith EL (eds) Frontiers of visual science. Springer-Verlag, New York, pp 544–556

    Google Scholar 

  • DeValois KK, DeValois RL, Yund EY (1979) Responses of striate cortex cells to grating and checkerboard patterns. JPhysiol291: 483–505

    Google Scholar 

  • DeValois RL, Albrecht DG, Thorell LG (1982) Spatial frequency selectivity of cells in macaque visual cortex. Vision Res 22: 545–559

    Article  CAS  Google Scholar 

  • Dow BM, Snyder AZ, Vautin RG, Bauer R (1981) Magnification factor and receptive field size in foveal striate cortex of monkey. Dip Brain Res44: 213–228

    Google Scholar 

  • Eckhorn R, Reitboeck HJ (1988) Assessment of cooperative firing in groups of neurons: special concepts for multiunit recordings from the visual system. In: Basar E (ed) Dynamics of sensory and cognitive processing Springer-Verlag, Berlin Heidelberg New York, pp 219–227

    Google Scholar 

  • Eckhorn R, Bauer R, Reitboeck HJ (1988) Discontinuities in visual cortex and possible functional implications: relating cortical structure and function with multi-electrode/correlation techniques. In: Basar E (ed) Springer series in brain dynamics, Vol 2 (in press)

    Google Scholar 

  • Elliott DF, Rao KR (1982) Fast transforms: algorithms, analyses, applications. Academic Press, New York Enroth-Cugell C, Robson JG (1966) The contrast sensitivity of retinal ganglion cells of the cat. J Physiol 187: 517–552

    Google Scholar 

  • Epstein LI (1984) An attempt to explain the differences between the upper and lower halves of the striate cortical map of the cat’s field of view. Biol Cybern 49: 175–177

    Article  PubMed  CAS  Google Scholar 

  • Fu KS (1974) Syntactic methods in pattern recognition. Academic Press, London

    Google Scholar 

  • Fu KS, Rosenfeld A (1976) Pattern recognition and image processing. IEEE Trans Comput C 25: 1336–1345

    Google Scholar 

  • Gray CM, Singer W (1987) Stimulus-dependent neuronal oscillations in the cat visual cortex area 17. Neurosci 22: 1301

    Google Scholar 

  • Harmuth HF (1972) Transmission of information by othogonal functions. Springer-Verlag, Berlin Heidelberg New York

    Book  Google Scholar 

  • Hu MK (1962) Visual pattern recognition by moment invarants. IRE Trans Inform Theo ‘II-8: 179–187 Huang GC, Russell FD, Chen WH (1975) Pattern recognition by Mellin transform. EIA/AIPR Symposium, Univ of Maryland

    Google Scholar 

  • Hughes HC, Sprague JM (1986) Cortical mechanisms for local and global analysis of visual space in the cat. Pap Brain Res 61: 332–354

    CAS  Google Scholar 

  • Johannesma P, Aertsen A, van den Boogaard H, Eggermont J, Epping W (1986) From synchrony to harmony: ideas on the function of neural assemblies and on the interpretation of neural synchrony. In: Palm G, Aertsen A (eds) Brain theory. Springer-Verlag, Berlin Heidelberg New York, pp 25–47

    Chapter  Google Scholar 

  • Kulikowski JJ, Bishop PO (1981) Fourier analysis and spatial representation in the visual cortex. Experientia 37: 160–163

    Article  PubMed  CAS  Google Scholar 

  • Kulikowski JJ, Kranda K (1986) Image analysis performed by the visual system: feature versus Fourier analyis and adaptable filtering. Pettigrew JD (ed) Visual neuroscience. Cambridge Univ Press, Cambridge Mass, pp 381–404

    Google Scholar 

  • Kunt M (1975) On computation of the Hadamard transform and the R-transform in ordered form. IEEE Comput Trans C-24: 1120–1121

    Google Scholar 

  • Macleod IDG, Rosenfeld A (1974) The visibility of gratings: spatial frequency channels or bar detecting units? Vision Res 14: 909–915

    Article  PubMed  CAS  Google Scholar 

  • MacKay D (1981) Strife over visual cortical function. Nature 289: 117–118

    Article  PubMed  CAS  Google Scholar 

  • Maffei L (1978) Spatial frequency channels: neural mechanisms. In: Held R, Leibowitz HW, Teuber HL (eds) Handbook of sensory physiology, Vol 8. Springer-Verlag, Berlin Heidelberg New York, pp 3966

    Google Scholar 

  • Maffei L, Fiorentini A (1973) The visual cortex as a spatial frequency analyzer. Vision Res 13: 1255–1267

    Article  PubMed  CAS  Google Scholar 

  • Malsburg C v d (1981) The correlation theory of brain function. Dept of Neurobiology Internal Report 812, MPI Biophysical Chemistry Göttingen

    Google Scholar 

  • McCollough C (1965) Color adaptation of edge-detectors in the human visual system. Science 149: 1115–1116

    Article  PubMed  CAS  Google Scholar 

  • Mishkin M, Ungerleider LG (1982) Contribution of striate inputs to the visuospatial functions of parietopreoccipital cortex in monkeys. Behav Brain Res6: 57–77

    Google Scholar 

  • Rao KR, Ahmed N (1980) A Class of discrete orthogonal transforms. Comp and Electr Eng (USA) Co 7: 79–87

    Article  Google Scholar 

  • Rao KR (1985) Discrete transforms and their applications. Van Nostrand Reinhold Comp, New York Reichardt W, Poggio T (1979) Figure-ground discrimination by relative movement in the visual system of the fly. Part I: Experimental results. Biol Cybern 35: 81–100

    Google Scholar 

  • Reichardt W, Poggio T, Hausen K (1983) Figure-ground discrimination by relative movement in the visual system of the fly. Part II: Towards the neural circuitry. Biol Cybern 46: 1–30

    Article  Google Scholar 

  • Reitboeck HJ (1982) in Altmann L (1982) Psychophysische Untersuchungen zur Rolle derSynchronität bei der Mustererkennung mit Hilfe einer mikroprozessorgesteuerten LED-Matrix MS Thesis, Univ of Marburg

    Google Scholar 

  • Reitboeck HJ (1983) A Multi-electrode matrix for studies of temporal signal correlations within neural assemblies. In: Basar E, Flohr H, Haken H, Mandell AJ (eds) Synergetics of the brain. Springer-Verlag, Berlin Heidelberg New York, pp 174–181

    Chapter  Google Scholar 

  • Reitboeck HJ, Altmann J (1984) A model for size-and rotation-invariant pattern processing in the visual system. Biol Cybem 51: 113–121

    Article  CAS  Google Scholar 

  • Reitboeck HJ, Brody TP (1969) A transformation with invariance under cyclic permutation for applications in pattern recognition. Inf Control 15: 130–154

    Article  Google Scholar 

  • Reitboeck HJ, Eckhorn R, Pabst M (1987a) A model of figure/ground separation based on correlated neural activity in the visual system. In: Haken H (ed) Synergetics of the brain. Springer-Verlag, Berlin Heidelberg New York, pp 44–54

    Google Scholar 

  • Reitboeck HJ, Eckhorn R, Pabst M (1987b) Texture description in the time domain. In: Cotterill RMJ (ed) Computer simulation in brain science. Cambridge Univ Press, Cambridge Mass

    Google Scholar 

  • Schiller PH, Finlay BL, Volman SF (1976) Quantitative studies of single-cell properties in monkey striate cortex. JNeurophysio139: 1288–1351

    Google Scholar 

  • Schwartz EL (1981) Cortical anatomy, size invariance, and spatial frequency analysis. Perception 10: 455–468

    Article  PubMed  CAS  Google Scholar 

  • Schwartz EL (1983) Cortical mapping and perceptual invariance: a reply to Cavanagh. Vision Res 23: 831–835

    Article  PubMed  CAS  Google Scholar 

  • Schwartz EL (1985) Local and global functional architecture in primate striate cortex: outline of a spatial mapping doctrine for perception. In: Rose D, Dobson VG (eds) Models of the visual cortex John Wiley, Chichester, pp 146–156

    Google Scholar 

  • Sprague JM, Leby J, DiBerardino A, Berlucchi G (1977) Visual cortical areas mediating form discrimination in the cat. J Comp Neural 172: 441–488

    Article  CAS  Google Scholar 

  • Stromeyer CF (1972) Edge-contingent color after effects: spatial frequency specificity. Vision Res 12: 717–733

    Article  PubMed  Google Scholar 

  • Teague MR (1980) Image analysis via the general theory of moments. J Opt SocAmer70: 920–930

    Google Scholar 

  • Ulman LJ (1970) Computation of the Hadamard transform and the R-transform in ordered form. IEEE Comput Trans C-19:359–360

    Google Scholar 

  • Wagh MD (1975) R-Transform amplitude bounds and transform volume. J Inst Electronics and Telecom Engrs 21: 501–502

    Google Scholar 

  • Wagh MD, Kanetkar SV (1975a) A multiplexing theorem and generalization of R-transform. Intern J Comput C-24: 1120–1121

    Google Scholar 

  • Wagh MD, Kanetkar SV (1975b) A multiplexing theorem and generalization of R-transform. Intern J Comput Math 5: 163–171

    Article  Google Scholar 

  • Wagh MD, Kanetkar SV (1977) A class of translation invariant transforms. IEEE Trans on Acoustics, Speech and Signal Processing, ASSP-25: 203–205

    Google Scholar 

  • West G, Reitboeck HJ (1979) Zur ähnlichkeitsinvarianten Mustererkennung mittels der Fourier-MellinTransformation. Elektron Informationsverarb und Kybernetik 15: 507–512

    Google Scholar 

  • Wilson JTL, Singer W (1981) Simultaneous visual events show a long-range spatial interaction. Perception and Psych ophys 30: 107–113

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer Science+Business Media New York

About this chapter

Cite this chapter

Reitboeck, H.J. (1989). Invariances in Pattern Recognition. In: Ewert, JP., Arbib, M.A. (eds) Visuomotor Coordination. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-0897-1_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-0897-1_12

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-0899-5

  • Online ISBN: 978-1-4899-0897-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics