Skip to main content

Role of Immunotherapy in Preventing and Managing Postirradiation Infections

  • Chapter
Treatment of Radiation Injuries

Abstract

Infection is the single most important complication of otherwise survivable exposures to radiation. For example, in mice given an LD50 of radiation,1 the animals that develop infections are the ones that die. These infections, which are often of enteric origin, are not seen in mice that survive the exposure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Miller, C. P., Hammond, C. W., and Tompkins, M. The incidence of bacteria in mice subjected to whole-body x-radiation. Science 3: 540–551, 1950.

    Article  Google Scholar 

  2. van der Waaij, D., Berghuis-de Vries, J. M., and Lekkerkerk-van der Wees, J. E. C. Colonization resistance of the digestive tract and spread of bacteria to the lymphatic organs of mice. J Hyg 70: 335–342, 1972.

    CAS  Google Scholar 

  3. Song, M., and DiLuzio, N. R. Yeast glucan and immunotherapy of infectious diseases. In: Lysosomes in Applied Biology. J. T. Dingle, P. J. Jacques, and I. H. Shaw, Eds. Elsevier North Holland, Amsterdam, 1979, pp. 533–547.

    Google Scholar 

  4. Patchen, M. L., D’Alesandro, M. M., Brook, I., et al. Glucan: Mechanisms involved in its “radioprotective” effect. J Leukocyte Biol 42: 95–105, 1987.

    CAS  Google Scholar 

  5. Patchen, M. L., MacVittie, T. J., and Jackson, W. E. Postirradiation glucan administration enhances the radioprotective effects of WR-2721. Radiat Res 117: 59–69, 1989.

    Article  PubMed  CAS  Google Scholar 

  6. Madonna, G. S., Ledney, G. D., Elliott, T. B., et al. Trehalose dimycolate enhances resistance to infection in neutropenic animals. Infect Immun 57: 2495–2501, 1989.

    PubMed  CAS  Google Scholar 

  7. Donati, R. M., McLaughlin, M. M., and Stromberg, L-W. R. Combined surgical and radiation injury. VIII. The effect of the gnotobiotic state on wound closure. Experientia 29: 1388–1390, 1973.

    Article  PubMed  CAS  Google Scholar 

  8. Matsumoto, M., Matsubara, S., Matsuno, T., et al. Protective effect of human granulocyte colony-stimulating factor on microbial infection in neutropenic mice. Infect Immun 55: 2715 2720, 1987.

    Google Scholar 

  9. Minami, A., Fujimoto, K., Ozaki, Y., etal. Augmentation of host resistance to microbial infections by recombinant human interleukin-la. Infect Immun 56: 3116–3120, 1988.

    PubMed  CAS  Google Scholar 

  10. Nakane, A., Minagawa, T., and Kato, K. Endogenous tumor necrosis factor (cachectin) is essential to host resistance against Listeria monocytogenes infection. Infect Immun 56: 2563–2569, 1988.

    CAS  Google Scholar 

  11. Tracey, K. J., Fong, Y., Hesse, D. G., et al. Anti-cachectin/TNF monoclonal antibodies prevent septic shock during lethal bacteremia. Nature 330: 662–664, 1987.

    Article  PubMed  CAS  Google Scholar 

  12. Porvaznik, M., Walker, R. I., and Gillmore, J. D. Reduction of the indigenous filamentous microorganisms in rat ilea following gamma-radiation. Scan Electron Microsc 3: 15–22, 1979.

    PubMed  Google Scholar 

  13. Sneller, M. C., and Strober, W. M cells and host defense. J Infect Dis 154: 737–741, 1986.

    Article  PubMed  CAS  Google Scholar 

  14. MacDonald, T. T., Bashore, M., and Carter, P. B. Nonspecific resistance to infection expressed within the Peyer’s patches of the small intestine. Infect Immun 37: 390–392, 1982.

    PubMed  CAS  Google Scholar 

  15. Walker, R. I., Schmauder-Chock, E. A., Parker, J. L., et al. Selective association and transport of Campylobacter jejuni through M cells of rabbit Peyer’s patches. Can J Microbiol 34: 1142 1147, 1988.

    Google Scholar 

  16. Kohbata, S., Yokoyama, H., and Yabuuchi, E. Cytopathogenic effect of Salmonella typhi GI FU 10007 on M cells of murine ileal Peyer’s patches in ligated ileal loops: An ultrastructural study. Microbiol Immunol 30: 1225–1237, 1986.

    PubMed  CAS  Google Scholar 

  17. Inman, L. R., and Cantey, J. R. Specific adherence of Escherichia coli (strain RDEC-1) to membranous (M) cells of the Peyer’s patch in Escherichia coli diarrhea in the rabbit. J Clin Invest 71: 1–8, 1983.

    Article  PubMed  CAS  Google Scholar 

  18. Owen, R. L., Pierce, N. F., Apple, R. J., et al. M cell transport of Vibrio cholerae from the intestinal lumen into Peyer’s patches: A mechanism for antigen sampling and for microbial transepithelial migration. J Infect Dis 153: 1108–1118, 1986.

    Article  PubMed  CAS  Google Scholar 

  19. Wassef, J. S., Keren, D. F., and Mailloux, J. L. Role of M cells in initial antigen uptake and in ulcer formation in the rabbit intestinal loop model of shigellosis. Infect Immun 57: 858863, 1988.

    Google Scholar 

  20. Wells, C. L., Maddaus, M. A., and Simmons, R. L. Proposed mechanisms for the translocation of intestinal bacteria. Rev Infect Dis 10: 958–979, 1988.

    Article  PubMed  CAS  Google Scholar 

  21. Wells, C. L., Maddaus, M. A., Erlandsen, S. L., et al. Evidence for the phagocytic transport of intestinal particles in dogs and cats. Infect Immun 56: 278–282, 1988.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer Science+Business Media New York

About this chapter

Cite this chapter

Walker, R.I. (1990). Role of Immunotherapy in Preventing and Managing Postirradiation Infections. In: Browne, D., Weiss, J.F., MacVittie, T.J., Pillai, M.V. (eds) Treatment of Radiation Injuries. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-0864-3_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-0864-3_11

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-0866-7

  • Online ISBN: 978-1-4899-0864-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics