Skip to main content

Bioengineering Issues Related to in Situ Remediation of Contaminated Soils and Groundwater

  • Chapter
Environmental Biotechnology

Part of the book series: Basic Life Sciences ((BLSC,volume 45))

Abstract

Biological processes have been used well over 100 years for the treatment of organic-bearing municipal and industrial wastewaters and municipal landfills. Aerobic biological processes, such as activated sludge and trickling filters, are used in virtually every city in the United States for treating dilute municipal wastewaters. Anaerobic processes are nearly as widely used to convert the concentrated sludges resulting from dilute waste treatment into methane gas, a useful form of fuel. About 30 years ago, it was first realized that by using completely mixed treatment processes, industrial wastewaters can be readily treated even though they contain organic compounds, such as phenol, that are toxic to microorganisms at the concentrations present. This is possible because the degrading microorganisms maintain the concentration of the chemical within the reactor below the toxic threshold. Biological treatment systems for such wastewaters are now common. Thus, a wide variety of biological processes for converting many forms of hazardous chemicals to innocuous end products are well established and extensively used throughout the world.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bailey, J.E., and D.F. Ollis (1986) Biochemical Engineering Fundamentals. McGraw-Hill, New York.

    Google Scholar 

  2. Barrio-Lage, G., F.Z. Parsons, R.S. Nassar, and P.A. Lorenzo (1986) Sequential dehalogenation of chlorinated ethenes. Environ. Sci. Technol. 20:96–99.

    Article  PubMed  CAS  Google Scholar 

  3. Belay, N., and L. Daniels (1987) Production of ethane, ethylene, and acetylene from halogenated hydrocarbons by methanogenic bacteria. Appl. Environ. Microbiol. 53:1604–1610.

    PubMed  CAS  Google Scholar 

  4. Bouwer, E.J., and P.L. McCarty (1983) Transformation of 1-and 2-carbon halogenated aliphatic organic compounds under methanogenic conditions. Appl. Environ. Microbiol. 45:1286–1294.

    PubMed  CAS  Google Scholar 

  5. Bouwer, E.J., and P.L. McCarty (1983) Transformations of halogenated organic compounds under denitrification conditions. Appl. Environ. Microbiol. 45:1295–1299.

    PubMed  CAS  Google Scholar 

  6. Bouwer, E.J., and P.L. McCarty (1985) Utilization rates of trace halogenated organic compounds in acetate-supported biofilms. Biotech. Bioengineer. 27:1564–1571.

    Article  CAS  Google Scholar 

  7. Bouwer, E.J., B.E. Rittmann, and P.L. McCarty (1981) Anaerobic degradation of halogenated 1-and 2-carbon organic compounds. Environ. Sci. Technol. 15:596–599.

    Article  PubMed  CAS  Google Scholar 

  8. Brock, T.D., D.W. Smith, and M.T. Madigan (1984) Biology of Microorganisms, 4th ed. Prentice-Hall, Englewood Cliffs, New Jersey.

    Google Scholar 

  9. Fogel, M.M., A.R. Taddeo, and S. Fogel (1986) Biodegradation of chlorinated ethenes by a methane-utilizing mixed culture. Appl. Environ. Microbiol. 51:720–724.

    PubMed  CAS  Google Scholar 

  10. Gossett, J.M. (1985) Anaerobic Degradation of Cl and C2 Chlorinated Hydrocarbons, U.S. Air Force Report ESL-TR-85-38, National Technical Information Service, Springfield, Virginia.

    Google Scholar 

  11. Hadden, CT., S.B. Benson, and N.W. Revis (1987) Degradation of perchloroethylene and trichloroethylene by an environmentally isolated Bacillus. Annual Meeting of the American Society for Microbiology, Atlanta, Georgia, Abstr. Q-103, p. 299.

    Google Scholar 

  12. Hartmans, S., J.A.M. de Bont, J. Tramper, and K.C.A.M. Luyben (1985) Bacterial degradation of vinyl chloride. Biotech. Lett. 7:383–388.

    Article  CAS  Google Scholar 

  13. Henry, S.M., and D. Grbic-Galic (1986) Aerobic degradation of trichloroethylene (TCE) by methylotrophs isolated from a contaminated aquifer. Annual Meeting of the American Society for Microbiology, Washington, D.C., Abstr. Q-64, p. 294.

    Google Scholar 

  14. Henson, J.M., M.V. Yates, and J.W. Cochran (1987) Metabolism of chlorinated aliphatic hydrocarbons by a mixed bacterial culture growing on methane. Annual Meeting of the American Society for Microbiology, Atlanta, Georgia, Abstr. Q-97, p. 298.

    Google Scholar 

  15. Horvath, R.S. (1972) Microbial co-metabolism and the degradation of organic compounds in nature. Bacteriol. Rev. 36:146–155.

    PubMed  CAS  Google Scholar 

  16. Janssen, D.B., G. Grobben, and B. Witholt (1987) Toxicity of chlorinated aliphatic hydrocarbons and degradation by methanotrophic consortia. In Proceedings of the Fourth European Congress on Biotechnology, Vol. 3., O.M. Neijssel, R.R. van der Meer, and K.C.A.M. Luyben, eds. Elsevier Science Publishers, Amsterdam, pp. 515–518.

    Google Scholar 

  17. Jensen, H.L. (1963) Carbon nutrition of some microorganisms decomposing halogen-substituted aliphatic acids. Acta Agr. Scand. 13:404–412.

    Article  CAS  Google Scholar 

  18. Kobayashi, H., and B.E. Rittmann (1982) Microbial removal of hazardous organic compounds. Environ. Sci. Technol. 16:170A–183A.

    Article  CAS  Google Scholar 

  19. Kohler-Staub, D., S. Hartmans, R. Galli, F. Suter, and T. Leisinger (1986) Evidence for identical dichloromethane dehalogenases in different methylotrophic bacteria. J. Gen. Microbiol. 132:2837–2843.

    CAS  Google Scholar 

  20. LaPat-Polasko, L.T., P.L. McCarty, and A.J.B. Zehnder (1984) Secondary substrate utilization of methylene chloride by an isolated strain of Pseudomonas Sp. Appl. Environ. Microbiol. 47:825–830.

    PubMed  CAS  Google Scholar 

  21. Lawrence, A.W., and P.L. McCarty (1970) Unified basis for biological treatment design and operation. J. Sanitary Engineer. Div., Am. Soc. Civil Engineers 96(SA3):757–778.

    Google Scholar 

  22. Leadbetter, E.R., and J.W. Foster (1959) Oxidation products formed from gaseous alkanes by the bacterium Pseudomonas methanica. Arch. Biochem. Biophys. 82:491–492.

    Article  PubMed  CAS  Google Scholar 

  23. Lee, M.D., and C.H. Ward (1984) Reclamation of contaminated aquifers: Biological techniques. In Proceedings of the 1984 Hazardous Material Spills Conference, pp. 98-103.

    Google Scholar 

  24. Little, D., A.V. Palumbo, S.E. Herbes, M.E. Lidstrom, R.L. Tyndall, and P.J. Gilmer (1987) Trichloroethylene biodegradation by pure cultures of a methane-oxidizing bacterium. App. Env. Microbiol. (submitted for publication).

    Google Scholar 

  25. McCarty, P.L. (1971) Energetics and bacterial growth. In Organic Compounds in Aquatic Environments, S.D. Faust and J.V. Hunter, eds. Marcel Dekker, New York, pp. 495–531.

    Google Scholar 

  26. McCarty, P.L. (1975) Stoichiometry of biological reactions. Progress in Water Technology 7:157–172.

    CAS  Google Scholar 

  27. McCarty, P.L., M. Reinhard, and B.E. Rittmann (1981) Trace organics in groundwater. Environ. Sci. Technol. 15:40–51.

    Article  CAS  Google Scholar 

  28. Nelson, M.J.K., S.O. Montgomery, W.R. Mahaggey, and P.H. Pritchard (1987) Biodegradation of trichloroethylene and involvement of an aromatic biodegradative pathway. Appl. Environ. Microbiol. 53:949–954.

    PubMed  CAS  Google Scholar 

  29. Paris, D.F., D.L. Lewis, and N.L. Wolfe (1975) Rates of degradation of malathion by bacteria isolated from aquatic systems. Environ. Sci. Technol. 9:135–138.

    Article  CAS  Google Scholar 

  30. Paris, D.F., W.C. Steen, G.L. Baughman, and J.T. Barnett, Jr. (1981) Second-order model to predict microbial degradation of organic compounds in natural waters. Appl. Environ. Microbiol. 41:603–609.

    PubMed  CAS  Google Scholar 

  31. Parsons, F., and G.B. Lage (1985) Chlorinated organics in simulated groundwater environments. J. Am. Water Works Assoc. 77(5):52–59.

    CAS  Google Scholar 

  32. Patel, R.N., T. Hou, A.I. Laskin, and A. Felix (1982) Microbial oxidation of hydrocarbons: Properties of a soluble methane monooxygenase from a facultative methane-utilizing organism, Methylobacterium sp. strain CRL-26. Appl. Environ. Microbiol. 44:1130–1137.

    PubMed  CAS  Google Scholar 

  33. Stirling, D.I., and H. Dalton (1979) The fortuitous oxidation and cometabolism of various carbon compounds by whole-cell suspensions of Methylococcus capsulatus (Bath). FEMS Microbiol. Lett. 5:315–318.

    Article  CAS  Google Scholar 

  34. Stucki, G., U. Krebser, and T. Leisinger (1983) Bacterial growth on 1,2-dichloroethane. Experimentia 39:1271–1273.

    Article  CAS  Google Scholar 

  35. Vogel, T.M., and P.L. McCarty (1985) Biotransformation of tetrachloroethylene to trichloroethylene, dichloroethylene, vinyl chloride, and carbon dioxide under methanogenic conditions. Appl. Environ. Microbiol. 49:1080–1083.

    PubMed  CAS  Google Scholar 

  36. Vogel, T.M., and P.L. McCarty (1987) Abiotic and biotic transformations of 1,1,1-trichloroethane under methanogenic conditions. Environ. Sci. Technol. (in press).

    Google Scholar 

  37. Vogel, T.M., C.S. Criddle, and P.L. McCarty (1987) Transformations of halogenated aliphatic compounds. Environ. Sci. Technol. 21:722–736.

    Article  PubMed  CAS  Google Scholar 

  38. Westerick, J.J., J.W. Mello, and R.F. Thomas (1984) The ground-water supply survey. J. Am. Water Works Assoc. 76(5):52–59.

    Google Scholar 

  39. Wilson, B.H., and M.V. White (1986) A fixed-film bioreactor to treat trichloroethylene-laden waters from interdiction wells. In Proceedings of the Sixth National Symposium and Exposition on Aquifer Restoration and Groundwater Monitoring, National Water Well Association, Columbus, Ohio.

    Google Scholar 

  40. Wilson, J.T., and B.H. Wilson (1985) Biotransformation of trichloroethylene in soil. Appl. Environ. Microbiol. 49:242–243.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer Science+Business Media New York

About this chapter

Cite this chapter

McCarty, P.L. (1988). Bioengineering Issues Related to in Situ Remediation of Contaminated Soils and Groundwater. In: Omenn, G.S. (eds) Environmental Biotechnology. Basic Life Sciences, vol 45. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-0824-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-0824-7_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-0826-1

  • Online ISBN: 978-1-4899-0824-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics