Skip to main content

Biotransformations of Mercury Compounds

  • Chapter
Book cover Environmental Biotechnology

Part of the book series: Basic Life Sciences ((BLSC,volume 45))

Abstract

The ability of bacteria to convert inorganic and organic mercury compounds to less toxic, volatile elemental mercury is among the most widely found plasmid-determined bacterial phenotypes. It is the best understood microbial metal transformation at levels of analysis from molecular genetics and biochemistry to population biology (4, 14). Mercury compounds are important contaminants in some environmental sites.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barkay, T., L. Fouts, and B.H. Olson (1985) A method for the detection of mercury resistance genes in natural bacterial isolates. Appl. Env. Microbiol. 49:686–692.

    CAS  Google Scholar 

  2. Begley, T.P., A.E. Walts, and C.T. Walsh (1986) Bacterial organomercurial lyase: Overproduction, isolation, and characterization. Biochemistry 25:7186–7192.

    Article  PubMed  CAS  Google Scholar 

  3. Begley, T.P., A.E. Walts, and C.T. Walsh (1986) Mechanistic studies of a protonolytic organomercurial cleaving enzyme: Bacterial organomercurial lyase. Biochemistry 25:7193.

    Google Scholar 

  4. Foster, T.J. (1987) Genetics and biochemistry of mercury resistance. CRC Crit. Rev, in Microbiol.

    Google Scholar 

  5. Griffin, H.G., T.J. Foster, S. Silver, and T.K. Misra (1987) Cloning and DNA sequence of the mercuric and organomercurial resistance determinants of plasmid pDU1358. Proc. Natl. Acad. Sci., USA 84:3112–3116.

    Article  PubMed  CAS  Google Scholar 

  6. Heltzel, A., D.G. Gambill, W.J. Jackson, P.A. Totis, and A.O. Summers (1987) Overexpression and DNA-binding properties of the merencoding regulatory protein from plasmid NR1 (Tn21.). J. Bact. 169: 3379–3384.

    PubMed  CAS  Google Scholar 

  7. Laddaga, R.A., L. Chu, T.K. Misra, and S. Silver (1987) Nucleotide sequence and expression of the mercurial-resistance operon from Staphylococcus aureus plasmid pI258. Proc. Natl. Acad. Sci., USA 84:5106–5110.

    Article  PubMed  CAS  Google Scholar 

  8. Lund, P.A., and N.L. Brown (1987) Role of the merT and merP gene products of transposon Tn501 in the induction and expression of resistance to mercuric ions. Gene 52:207–214.

    Article  PubMed  CAS  Google Scholar 

  9. Lund, P.A., S.J. Ford, and N.L. Brown (1986) Tran scriptional regulation of the mercury-resistance genes of transposon Tn501. J. Gen. Microbiol. 132:465–480.

    Article  CAS  Google Scholar 

  10. Miller, S.M., D.P. Ballou, V. Massey, C.H. Williams, Jr., and C.T. Walsh (1986) Two-electron reduced mercuric reductase binds Hg(II) to the active site dithiol but does not catalyze Hg(II) reduction. J. Biol. Chem.

    Google Scholar 

  11. Nakahara, H., J.L. Schottel, T. Yamada, Y. Miyakawa, M. Asakawa, J. Harville, and S. Silver (1985) Mercuric reductase enzymes from Streptomyces species and group B Streptococcus. J. Gen. Microbiol. 131:1053–1059.

    PubMed  CAS  Google Scholar 

  12. O’Halloran, T., and C. Walsh (1987) Metalloregulatory DNA-binding protein encoded by the merR gene: Isolation and characterization. Science 235:211–214.

    Article  PubMed  Google Scholar 

  13. Schultz, P.G., K.G. Au, and C.T. Walsh (1985) Directed mutagenesis of the redox-active disulfide in the flavoenzyme mercuric ion reductase. Biochem. 26:6840–6848.

    Google Scholar 

  14. Summers, A.O. (1986) Organization, expression, and evolution of genes for mercury resistance. Ann. Rev. Microbiol. 40:607–634.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer Science+Business Media New York

About this chapter

Cite this chapter

Summers, A.O. (1988). Biotransformations of Mercury Compounds. In: Omenn, G.S. (eds) Environmental Biotechnology. Basic Life Sciences, vol 45. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-0824-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-0824-7_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-0826-1

  • Online ISBN: 978-1-4899-0824-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics