Skip to main content

Prospects for Laboratory Engineering of Bacteria to Degrade Pollutants

  • Chapter
Environmental Biotechnology

Part of the book series: Basic Life Sciences ((BLSC,volume 45))

Abstract

Over the last few decades enormous quantities of industrial chemicals have been released into the environment. A large number of them, particularly those structurally related to natural compounds, are readily degraded by soil and water microorganisms. However, a significant proportion, mainly those having novel structural elements or substituents rarely found in nature (xenobiotics), are only catabolized slowly and thus tend to persist and accumulate in the environment. Certain compounds, particularly those that exhibit some degree of toxicity, contribute substantially to environmental pollution. Recent environmental catastrophes have underscored the acute danger that industrial chemicals constitute for our biosphere. However, the existence of many waste dump sites containing highly toxic substances and large scale chronic pollution certainly represent a more important long-term hazard. Clearly, in addition to terminating current production of the more toxic and persistent industrial chemicals, it is essential to exploit more effectively the biodegradative capacities of soil microorganisms in order to diminish the consequences of existing and continuing environmental pollution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bartels, I., H.-J. Knackmuss, and W. Reineke (1984) Suicide inactivation of catechol 2,3-dioxygenase from Pseudomonas putida mt-2 by 3-halocatechols. Appl. Environ. Microbiol. 47:500–505

    PubMed  CAS  Google Scholar 

  2. Campbell, J.H., J.A. Lengyel, and J. Langridge (1973) Evolution of a second gene for β-galactosidase in Escherichia coli. Proc. Natl. Acad. Sci., USA 70:1841–1845.

    Article  PubMed  CAS  Google Scholar 

  3. Clarke, P.H. (1978) Experiments in microbial evolution. In The Bacteria, Vol. 4, L.N. Ornston and J.R. Sokatch, eds. Academic Press, New York, pp. 137–218.

    Google Scholar 

  4. Cocks, G.T., J. Aguilar, and E.C.C. Lin (1974) Evolution of L-1,2-propanediol catabolism in Escherichia coli by recruitment of enzymes for L-glucose and L-lactate metabolism. J. Bacteriol. 118:83–88.

    PubMed  CAS  Google Scholar 

  5. Dorn, E., M. Hellwig, W. Reineke, and H.-J. Knackmuss (1974) Isolation and characterization of a 3-chlorobenzoate degrading Pseudomonad. Arch. Microbiol. 99:61–70.

    Article  PubMed  Google Scholar 

  6. Gibson, D.T. (1984) Microbial Degradation of Organic Compounds (Microbiology Series, Vol. 13), Marcel Dekker, Inc., New York.

    Google Scholar 

  7. Harayama, S., and R.H. Don (1985) Catabolic plasmids: Their analysis and utilization in the manipulation of bacterial metabolic activities. In Genetics Engineering: Principles and Methods, Vol. 7, J.K. Setlow and A. Hollaender, eds. Plenum Publishing Corporation, New York, pp. 283–307.

    Chapter  Google Scholar 

  8. Harayama, S., P.R. Lehrbach, and K.N. Timmis (1984) Transposon mutagenesis analysis of meta-cleavage pathway operon genes of the TOL plasmid of Pseudonomas putida mt-2. J. Bacteriol. 160:251–255.

    PubMed  CAS  Google Scholar 

  9. Harayama, S., J.L. Ramos, and K.N. Timmis (1986) Experimental evolution of plasmid specified functions. In Antibiotic Resistance Genes: Ecology, Transfer and Expression, Banbury Report 24, S.B. Levy and R.P. Novick, eds. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, pp. 389–402.

    Google Scholar 

  10. Harayama, S., R.A. Leppik, M. Rekik, N. Mermod, P.R. Lehrbach, W. Reineke, and K.N. Timmis (1986) Gene order of the TOL catabolic plasmid upper pathway operon and oxidation of both toluene and ben-zylalcohol by the xylA product. J. Bacteriol. 167:455–461.

    PubMed  CAS  Google Scholar 

  11. Knackmuss, H.-J. (1983) Xenobiotic degradation in industrial sewage: Haloaromatics as target substrates. In Biotechnology, Biochemical Society Symposium No. 48, C.F. Phelps and P.H. Clarke, eds. Biochemical Society, London, pp. 173–190.

    Google Scholar 

  12. Knackmuss, H.-J., and M. Hellwig (1978) Utilization and cooxidation of chlorinated phenols by Pseudomonas sp. B13, Arch. Microbiol. 117:1–7.

    Article  PubMed  CAS  Google Scholar 

  13. Lehrbach, P.R., J. Zeyer, W. Reineke, H.-J. Knackmuss, and K.N. Timmis (1984) Enzyme recruitment in vitro: Use of cloned genes to extend the range of haloaromatics degraded by Pseudomonas sp. strain B13. J. Bacteriol. 158:1025–1032.

    PubMed  CAS  Google Scholar 

  14. Mermod, N., S. Harayama, and K.N. Timmis (1986) New route to bacterial production of indigo. Bio/Technology 4:321–324.

    Article  CAS  Google Scholar 

  15. Mortlock, R.P. (1982) Metabolic acquisitions through laboratory selection. Ann. Rev. Microbiol. 36:259–284.

    Article  CAS  Google Scholar 

  16. Pemberton, J.M., B. Corney, and R.H. Don (1979) Evolution and spread of pesticide degrading ability among soil microorganisms. In Plasmids of Medical, Environmental and Commercial Importance, K.N. Timmis and A. Puhler, eds. Elsevier /North-Holland Biomedical Press, Amsterdam, pp. 287–299.

    Google Scholar 

  17. Pieper, D.H., K.H. Engesser, R.H. Don, K.N. Timmis, and H.-J. Knackmuss (1985) Modified ortho-cleavage pathway in Alcaligenes eutrophus JMP134 for the degradation of 4-methylcatechol. FEMS Microbiol. Lett. 29:63–67.

    Article  CAS  Google Scholar 

  18. Ramos, J.L., and K.N. Timmis (1987) Experimental evolution of catabolic pathways of bacteria. Microbiol. Sci. 4:228–237.

    PubMed  CAS  Google Scholar 

  19. Ramos, J.L., A. Stolz, W. Reineke, and K.N. Timmis (1986) Altered effector specificities in regulators of gene expression: TOL plasmid xylS mutants and their use to engineer expansion of the range of aromatics degraded by bacteria. Proc. Natl. Acad. Sci., USA 83: 8467–8471.

    Article  PubMed  CAS  Google Scholar 

  20. Ramos, J.L., A. Wasserfallen, K. Rose, and K.N. Timmis (1987) Redesigning metabolic routes: Manipulation of TOL plasmid pathway for catabolism of alkylbenzoates. Science 235:593–596.

    Article  PubMed  CAS  Google Scholar 

  21. Reineke, W., and H.-J. Knackmuss (1978) Chemical structure and biodegradability of halogenated aromatic compounds. Substituent effects on 1,2 dioxygenation of benzoic acid. Biochim. Biophys. Acta 542:312–423.

    Google Scholar 

  22. Reineke, W., and H.-J. Knackmuss (1979) Construction of haloaromatics utilizing bacteria. Nature 277:385–386.

    Article  PubMed  CAS  Google Scholar 

  23. Rojo, F., D.H. Pieper, K.H. Engesser, H.-J. Knackmuss, and K.N. Timmis (1987) Assemblage of ortho cleavage route for simultaneous degradation of chloro-and methylaromatics. Science 235:1395–1398.

    Article  Google Scholar 

  24. Schmidt, E., I. Bartels, and H.-J. Knackmuss (1985) Degradation of 3-chlorobenzoate by benzoate or 3-methylbenzoate-utilizing cultures. FEMS Microbiol. Ecol. 31:381–389.

    CAS  Google Scholar 

  25. Timmis, K.N., M.I. Gonzalez-Carrero, T. Sekizaki, and F. Rojo (1986) Biological activities specified by antibiotic resistance plasmids. J. Antimicrob. Chemothe. Vol. 18, Suppl. C., pp. 1-12.

    Google Scholar 

  26. Timmis, K.N., P.R. Lehrbach, S. Harayama, R.H. Don, N. Mermod, S. Bas, R. Leppik, A.J. Weightman, W. Reineke, and H.-J. Knackmuss (1985) Analysis and manipulation of plasmid encoded pathways for the catabolism of aromatic compounds by soil bacteria. In Plasmids in Bacteria, D.R. Helinski, S.N. Cohen, D.B. Clewell, D.A. Jackson, and A. Hollaender, eds., Plenum Publishing Corporation, New York, pp. 719–739.

    Chapter  Google Scholar 

  27. Worsey, M.J., and P.A. Williams (1975) Metabolism of toluene and the xylenes by Pseudomonas putida (arvilla) mt-2: Evidence for a new function of the TOL plasmid. J. Bacteriol. 124:7–13.

    PubMed  CAS  Google Scholar 

  28. Yen, K.M., and I.C. Gunsalus (1982) Plasmid gene organization: Naphthalene/salicylate oxidation. Proc. Natl. Acad. Sci., USA 79: 874–878.

    Article  PubMed  CAS  Google Scholar 

  29. Yen, K.M., and I.C. Gunsalus (1985) Regulation of naphthalene catabolic genes of plasmid NAH7. J. Bacteriol. 162:1008–1013.

    PubMed  CAS  Google Scholar 

  30. Zeyer, J., P.R. Lehrbach, and K.N. Timmis (1985) Use of cloned genes of Pseudomonas TOL plasmid to effect biotransformation of benzoates to cis-dihydrodiols and catechols by Escherichia coli cells. Appl. Environ. Microbiol. 50:1409–1413.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer Science+Business Media New York

About this chapter

Cite this chapter

Timmis, K.N., Rojo, F., Ramos, J.L. (1988). Prospects for Laboratory Engineering of Bacteria to Degrade Pollutants. In: Omenn, G.S. (eds) Environmental Biotechnology. Basic Life Sciences, vol 45. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-0824-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-0824-7_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-0826-1

  • Online ISBN: 978-1-4899-0824-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics