Skip to main content

A Physical Model for the Observed Dependence of the Metal-Semiconductor Work Function Difference on Substrate Orientation

  • Chapter

Abstract

The metal-semiconductor work function difference Ø ms in the Al—SiO2—Si system has been measured using capacitance-voltage (C-V) measurements, and it was found to be orientation dependent, with the (100) orientation having a Ø ms larger than that of (111) by — 0.250 V. This result is in agreement with previous studies which showed that Ø ms is both orientation and processing dependent. These observations are interpreted in terms of the contribution of dipole moments resulting from partial charge transfer in interface bonds to the Ø ms . Such charge transfer takes place in bonds at the Si—SiO2 and gate—SiO2 interfaces and in their vicinity. The contribution of these dipole moments to the measured Ø ms has been calculated from first principles, and the results predict the orientation dependence of Ø ms , and provide a physical model for further investigating its processing dependence. Measurements and process modeling of charge components in metal-oxide-semiconductor (MOS) devices will be discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. M. Sze, Physics of Semiconductor Devices, 2nd Edition, Wiley-Interscience, John Wiley Sons, New York, 1981.

    Google Scholar 

  2. E. H. Nicollian and J. R. Brews, MOS (Metal Oxide Semiconductor) Physics and Technology, John Wiley Sons, New York, 1982.

    Google Scholar 

  3. B. E. Deal, E. H. Snow, and C. A. Mead, J. Chem. Phys. Sol. 27, 1873 (1966).

    Article  CAS  Google Scholar 

  4. W. M. Werner, Solid-State Electron. 17, 769 (1974).

    Article  CAS  Google Scholar 

  5. S. Kar, Solid-State Electron. 18, 169 (1975).

    Article  CAS  Google Scholar 

  6. S. Kar, Solid-State Electron. 18, 723 (1975).

    Article  CAS  Google Scholar 

  7. H. B. Michaelson, J. Appl. Phys. 48, 4729 (1977).

    Article  CAS  Google Scholar 

  8. L. A. Kasprzak and A. K. Gaind, in The Physics of Si02 and Its Interfaces, S. T. Pantelides, Ed., Pergamon Press, New York, 1978.

    Google Scholar 

  9. A. K. Gaind and L. A. Kasprzak, Abstract No. 344, Extended Abstracts Vol. 77–2, The Electrochemical Society Fall Meeting, Atlanta, Georgia, Oct. 9–14, 1977.

    Google Scholar 

  10. A. K. Gaind and L. A. Kasprzak, Solid-State Electron. 22, 303 (1979).

    Article  CAS  Google Scholar 

  11. K. Haberle and E. Fròschle, J. Electrochem. Soc. 126, 878 (1979).

    Article  CAS  Google Scholar 

  12. L. A. Kasprzak and A. K. Gaind, IBM J. Res. Develop. 24, 348 (1980).

    Article  CAS  Google Scholar 

  13. T. W. Hickmott, in The Physics of MOS Insulators, G. Luckovsky, S. T. Pantelides, and F. L. Galeener, Eds., Pergamon Press, New York, 1980.

    Google Scholar 

  14. T. W. Hickmott, J. Appl. Phys. 51, 4269 (1980).

    Article  CAS  Google Scholar 

  15. N. W. Jones and M. R. Gulett, Abstract No. 523, Extended Abstracts Vol. 80–2, The Electrochemical Society Fall Meeting, Hollywood, Florida, Oct 5–10, 1980.

    Google Scholar 

  16. H. M. Przewlocki, S. Krawczyk, and A. Jakubowski, Phys. Stat. Sol. (a) 65, 253 (1981).

    Article  CAS  Google Scholar 

  17. S. K. Krawczyk, H. M. Przewlocki, and A. Jakubowski, Revue Phys. Appl. 17, 473 (1982).

    Article  CAS  Google Scholar 

  18. H. M. Przewlocki, in Physics of Semiconductor Devices, S.C. Jain and S. Radhakrishna, Eds., Halsted Press, John Wiley Sons, 1982.

    Google Scholar 

  19. R. R. Razouk and B. E. Deal, Abstract No. 376, Extended Abstracts Vol. 81–2, The Electrochemical Society Fall Meeting, Denver, Colorado, Oct 11–16, 1981.

    Google Scholar 

  20. R. R. Razouk and B. E. Deal, J. Electrochem. Soc. 129, 806 (1982).

    Article  CAS  Google Scholar 

  21. H. Z. Massoud, Thermal Oxidation of Silicon in Dry Oxygen -Growth Kinetics and Charge Characterization in the Thin Regime, Tech. Rep. No. G502–1, Stanford Electronics Laboratories, Stanford University, Stanford, CA, June 1983.

    Google Scholar 

  22. A. I. Akinwande and J. D. Plummer, J. Electrochem. Soc. 134, 2297 (1987).

    Article  CAS  Google Scholar 

  23. T. Sakurai and H. D. Hagstrum, Phys. Rev. B12, 5349 (1975).

    Article  CAS  Google Scholar 

  24. T. Sakurai and H. D. Hagstrum, Phys. Rev. B14, 1593 (1976).

    Article  CAS  Google Scholar 

  25. P. M. Solomon and D. J. DiMaria, J. Appl. Phys. 52, 5867 (1981).

    Article  CAS  Google Scholar 

  26. H. Z. Massoud, Mat. Res. Soc. Symp. Proc. 105, (1988).

    Google Scholar 

  27. H. Z. Massoud, J. Appl. Phys. 63, 2000 (1988).

    Google Scholar 

  28. R. T. Sanderson, Science 114, 670 (1951).

    Article  CAS  Google Scholar 

  29. R. T. Sanderson, Inorganic Chemistry, Reinhold, New York, 1967.

    Google Scholar 

  30. P. Perfetti, C. Quaresima, C. Coluzza, C. Fortunato, and G. Margaritondo, Phys. Rev. Lett. 57, 2065 (1986).

    Article  CAS  Google Scholar 

  31. F. J. Grunthaner an4 P. J. Grunthaner, Materials Science Reports 1, 65 (1986).

    Article  CAS  Google Scholar 

  32. R. S. Bauer and R. Z. Bachrach, Appl. Phys. Lett. 37, 1006 (1980).

    Article  CAS  Google Scholar 

  33. B. E. Deal, J. Electrochem. Soc. 121, 198C (1974).

    Google Scholar 

  34. M. Revitz, S. I. Raider, and R. A. Gdula, J. Vac. Sci. Technol. 16, 345 (1979).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer Science+Business Media New York

About this chapter

Cite this chapter

Massoud, H.Z., Plummer, J.D. (1988). A Physical Model for the Observed Dependence of the Metal-Semiconductor Work Function Difference on Substrate Orientation. In: Helms, C.R., Deal, B.E. (eds) The Physics and Chemistry of SiO2 and the Si-SiO2 Interface. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-0774-5_28

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-0774-5_28

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-0776-9

  • Online ISBN: 978-1-4899-0774-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics