Skip to main content

Abstract

Electrical properties of anodic SiO2 grown at room temperature and annealed at 450℃ have been shown to closely approach those of thermal SiO2. Midgap interface state densities in the low-1010 cm−2.eV−1. oxide surface charge at flatband in the low-1010 cm−2. average breakdown fields in excess of 10 MV/cm. and do resistivities above 1016 Ω.cm at 1MV/cm have been measured. The oxide surface charge at flatband is thickness dependent. The dependence of electrical and structural properties on various annealing conditions will be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. Batey and E. Tierney, J. Appl. Phys. 60. 3136 (1986).

    Article  CAS  Google Scholar 

  2. J. Batey. E. Tierney. and T.N. Nguyen. IEEE Electron Device Lett. EDL-8. 148 (1987).

    Google Scholar 

  3. G. Lucovsky, P.D. Richard. D.V. Tsu. S.Y. Lin. And R.J. Markunas. J. Vac. Sci. Technol. A. 4. 681 (1986).

    CAS  Google Scholar 

  4. U. Sharma. RCA Review. 47. 551 (1986)

    CAS  Google Scholar 

  5. P.K. Boyer, G.A. Roche W.H. Ritchie, and G.J. Collins. Appl. Phys. Lett. 40. 716 (1982).

    Google Scholar 

  6. K. Inoue. M. Michimori, M. Okuyama, and Y. Hamakawa. Jpn. J. Appl. Phys. 26. 805 (1987).

    Google Scholar 

  7. H. Richter and T.E. Orlowski. J. Appt. Phys. 56. 2351 (1984).

    CAS  Google Scholar 

  8. S. Taylor, E. E.cleston. and P. Watkinson. Electron. Lett., 23. 732 (1987).

    Article  Google Scholar 

  9. S. Kimura. E. Murakami. K. Miyake. T. Warabisako. H. Sunami, and T. Tokuyama. J. Electrochem. Soc. 132. 1460 (1985).

    Article  Google Scholar 

  10. A.K. Ray and Asman, J. Electrochem. Soc. 128, 2466 (1981).

    Article  CAS  Google Scholar 

  11. B.R. Bennett. J.P. Lorenzo, and K. Vaccaro. Appl. Phys. Lett. 50. 197 (1987).

    Google Scholar 

  12. B.R. Bennett. J.P. Lorenzo, and K. Vaccaro, Electron. Lett. 24. 172 (1988).

    Article  Google Scholar 

  13. S. Suyama. A. Okamoto, and T. Serikawa. J. Electrochem. Soc. 134. 2260 (1987).

    Google Scholar 

  14. P.F. Schmidt and W. Michel. J. Electrochem. Soc. 104. 230 (1957).

    Google Scholar 

  15. A.G. Revesz. J. Electrochem. Soc. 114. 629 (1967).

    Article  CAS  Google Scholar 

  16. J.D.E. Beynon. G.G. Bloodworth, and I.M. Mcleod, Solid-State Electronics. 16. 309 (1973).

    Article  Google Scholar 

  17. H. Hasegawa. S. Arimoto. J. Nanjo, H. Yamamoto. and H. Ohno, J. Electrochem. Soc. 135. 424 (1988).

    Article  Google Scholar 

  18. H. Yamamoto. T. Sawada. S. Arimoto, H. Hasegawa. and H. Ohno. Electron. Lett., 19, 607 (1983).

    Google Scholar 

  19. G. Mende. K.D. Butter. and B. Schmidt, Thin Solid Films. 102, 65 (1983).

    Article  Google Scholar 

  20. I.W. Boyd and J.1.B. Wilson. J. Appl. Phys., 62. 3195 (1987)

    Google Scholar 

  21. P.G. Pai. S.S. Chao. Y. Takagi. and G. Lucovsky, J. Vac. Sci. Technol. A. 4. 689 (1986).

    Google Scholar 

  22. W.A. Pliskin and H.S. Lehman. J. Electrochem. Soc. 112. 1013 (1965).

    CAS  Google Scholar 

  23. I.W. Boyd and J.I.B. Wilson, J. Appt. Phys. 53. 4166 T982 ).

    Google Scholar 

  24. E.H. Nicollian and J.R. Brews. MOS Physics and Technology, Wiley. New York. 1982.

    Google Scholar 

  25. S. Seki. T. Unagami. and B. Tsujiyama. J. Electrochem. Soc. 131. 2621 (1984).

    Article  Google Scholar 

  26. G. Mende and J. Wende. Thin Solid Films, 142. 21 (1986).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer Science+Business Media New York

About this chapter

Cite this chapter

Sayyah, K. (1988). Anodic SiO2 for Low Temperature Gate Dielectrics. In: Helms, C.R., Deal, B.E. (eds) The Physics and Chemistry of SiO2 and the Si-SiO2 Interface. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-0774-5_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-0774-5_14

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-0776-9

  • Online ISBN: 978-1-4899-0774-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics