Skip to main content

Radiation-Induced Cationic Curing of Vinyl Ethers

  • Chapter

Part of the book series: Topics in Applied Chemistry ((TAPP))

Abstract

Recently there has been increasing interest in nonacrylate radiation-curable coatings. One factor that limits the choice of alternative chemical systems is the energy dose that is required to cure the coatings. Most UV-cured coatings are designed to cure with a dose of about 0.2 to 1.0 J/cm2. This corresponds to line speeds of about 20 to 100 m/min with two 80 W/cm medium-pressure mercury arc lamps. Most electron beam (EB)-cured coatings are cured with doses ranging from 2 to 10 Mrad. In spite of the fact that UV and EB irradiation are quite different in nature, simple energy unit conversions show that the total energy applied at the surface of the coating are actually quite similar for UV- and EB-cured coatings. Assuming a unit density liquid coating material applied at a thickness of 0.01 cm (ca. 4 mil), it follows that 2 Mrad = 20 J/g × 1 g/cm3 × 0.01 cm = 0.2 J/cm2.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. For a review see: J. V. Crivello, Adv. Polym. Sci. 62, 1 (1984).

    Article  CAS  Google Scholar 

  2. D. R. McKean, U. Schaedeli, and S. A. MacDonald, J. Polym. Sci. Polym. Chem. Ed. 27, 3927 (1989).

    Article  CAS  Google Scholar 

  3. W. R. Watt, in: UV Curing: Science and Technology (S. P. Pappas, ed.), Vol.11, p. 247, Technology Marketing Corp., Norwalk, Conn. (1985).

    Google Scholar 

  4. H. G. Gaube, Radcure′86 Conf. Proc, p. 15–27, Soc. Manuf. Eng., Dearborn, Mich. (1986).

    Google Scholar 

  5. J. V. Koleske, RadTech′88 Conf. Proc., p. 353, RadTech International, Northbrook, Ill. (1988).

    Google Scholar 

  6. J. V. Crivello, J. H. W. Lam, and C. N. Volante, J. Radiat. Curing 4(2), 2 (1977).

    CAS  Google Scholar 

  7. J. V. Crivello and J. L. Lee, Polym. Mater. Sci. Eng. Prepr. 60, 217 (1989).

    CAS  Google Scholar 

  8. J. V. Crivello and J. L. Lee, Macromolecular Synthesis, Vol. 9, p. 43 (1979).

    Google Scholar 

  9. For a review see: J. P. Kennedy and E. Maréchal, Carbocationic Polymerization, Wiley-Interscience, New York (1982).

    Google Scholar 

  10. H. K. Hall and M. Atsumi, Polym. Bull. 19, 319 (1988).

    Article  CAS  Google Scholar 

  11. D. H. Lorenz and N. B. Bikalcs, Encycl. Polym. Sci., Wiley-Interscience, New York (1964).

    Google Scholar 

  12. J. W. Reppe, Acetylene Chemistry, Charles A. Meyer, New York (1949).

    Google Scholar 

  13. J. V. Crivello, J. L. Lee, and D. A. Conlon, Radcure VI Conf. Proc, p. 4–28, Soc. Manuf. Eng., Dearborn, Mich. (1982).

    Google Scholar 

  14. J. A. Dougherty, F. J. Vara, and L. R. Anderson, in Ref. 4, p. 15-1.

    Google Scholar 

  15. GAF Corp., Wayne, N.J.

    Google Scholar 

  16. J. A. Dougherty and F. J. Vara, in Ref. 5, p. 372.

    Google Scholar 

  17. T. Suzuki and T. Tomono, J. Polym. Sci. Polym. Chem. Ed. 22, 2829 (1984).

    Article  CAS  Google Scholar 

  18. W. Hoelderich, N. Goetz, and L. Hupfer, U. S. Patent 4, 891, 451 (1990).

    Google Scholar 

  19. W. H. Watanabe and L. E. Conlon, J. Am. Chem. Soc. 79, 2828 (1957).

    Article  CAS  Google Scholar 

  20. M. A. Smith and K. B. Wagener, Polym. Prepr. 28(2), 264 (1987).

    CAS  Google Scholar 

  21. S. C. Lapin and J. R. Snyder, RadTech′90 Conf. Proc, Vol. I, p. 410, RadTech International, Northbrook, Ill. (1990).

    Google Scholar 

  22. S. C. Lapin, in Ref. 5, p. 395.

    Google Scholar 

  23. P.-E. Sundell, Cationic Polymerization of Vinyl Ethers Using Iodonium and Sulfonium Salts, Ph.D. thesis, Royal Institute of Technology, Stockholm (1990).

    Google Scholar 

  24. S. C. Lapin and S. A. Munk, U. S. Patent 4, 749, 807 (1988).

    Google Scholar 

  25. R. J. Bräutigam, S. C. Lapin, and J. R. Snyder, in Ref. 21, p. 99.

    Google Scholar 

  26. S. C. Lapin and D. W. House, U. S. Patent 4, 751, 273 (1988).

    Google Scholar 

  27. C.-H. Chang, G. K. Noren, J. J. Krajewski, and E. J. Murphy, Int. Patent Appl. WO 90/03989 (1990).

    Google Scholar 

  28. R. R. Gallucci and R. C. Going, J. Org. Chem. 48, 342 (1983).

    Article  CAS  Google Scholar 

  29. J. V. Crivello and D. A. Conlon, J. Polym. Sci. Polym. Chem. Ed. 21, 1785 (1983).

    Article  CAS  Google Scholar 

  30. J. V. Crivello and R. P. Eckberg, U. S. Patent 4, 617, 238 (1986).

    Google Scholar 

  31. R. Eckberg, in Ref. 5, p. 576.

    Google Scholar 

  32. S. C. Lapin, in Ref. 4, p. 15-15.

    Google Scholar 

  33. S. Jonsson, P.-E. Sundell, and A. Huit, in Ref. 21, p. 417.

    Google Scholar 

  34. J. L. Dektar and N. P. Hacker, J. Org. Chem. 55, 639 (1990).

    Article  CAS  Google Scholar 

  35. J. L. Dektar and N. P. Hacker, J. Am. Chem. Soc. 112, 6004 (1990).

    Article  CAS  Google Scholar 

  36. S. P. Pappas, Prog. Org. Coat. 13, 35 (1985).

    Article  CAS  Google Scholar 

  37. A. Ledwith, Macromol. Chem. Suppl. 3, 349 (1979).

    Article  Google Scholar 

  38. S. V. Nablo and E. P. Tripp, Radiat. Phys. Chem. 9, 325 (1977).

    CAS  Google Scholar 

  39. W. R. Watt, in Ref. 3, p. 277.

    Google Scholar 

  40. W. C. Hsieh, A. Deffieux, D. R. Squire, and V. Stannett, Polymer 23, 427 (1982).

    Article  CAS  Google Scholar 

  41. A. Hult and P.-E. Sundell, Polym. Mater. Sci. Eng. Prepr. 60, 453 (1989).

    CAS  Google Scholar 

  42. S. R. Sauerbrumm and D. C. Armbruster, in Ref. 21, p. 303.

    Google Scholar 

  43. C. Decker and K. Moussa, Polym. Mater. Sci. Eng. Prepr. 60, 547 (1989).

    CAS  Google Scholar 

  44. Y. Yagci and W. Schnabel, Macromol. Chem. Macromol. Symp. 13/14, 161 (1988).

    Google Scholar 

  45. J. V. Crivello, D. A. Conlon, D. R. Olsen, and K. K. Webb, Radcure Europe′87 Conf. Proc, p. 1–27, Soc. Manuf. Eng., Dearborn, Mich. (1987).

    Google Scholar 

  46. T. Nakamura, S. Aoshima, and T. Higashimura, Polym. Bull. 14, 515 (1985).

    Article  CAS  Google Scholar 

  47. M. Minoda, M. Sawamoto, and T. Higashimura, Polym. Bull. 17, 107 (1987).

    Article  CAS  Google Scholar 

  48. W. O. Choi, M. Sawamoto, and T. Higashimura, Polym. J. 19, 889 (1987).

    Article  CAS  Google Scholar 

  49. S. C. Lapin, Polym. Mater. Sci. Eng. Prepr. 61, 302 (1989).

    CAS  Google Scholar 

  50. B. L. Brann, RadTech Europe ′89 Conf Proc, p. 565, RadTech International, Fribourg, Switzerland (1989).

    Google Scholar 

  51. R. F. Eaton, B. D. Hanrahan, and J. K. Braddock, in Ref. 21, p. 384.

    Google Scholar 

  52. J. A. Dougherty and F. J. Vara, in Ref. 21, p. 402.

    Google Scholar 

  53. H. K. Hall, Angew. Chem. Int. Ed. Engl. 22, 440 (1983).

    Article  Google Scholar 

  54. T. Kokubo, S. Iwatsuki, and Y. Yamashita, Macromolecules 1, 482 (1968).

    Article  CAS  Google Scholar 

  55. T. Li, W. Cao, and X. Feng, J. Macromol. Sci. Rev. Macromol. Chem. Phys. C29, 153 (1989).

    Article  CAS  Google Scholar 

  56. T. Li, B. Luo, G. Chu, and H. Hall, J. Polym. Sci.: Polym. Chem. Ed. 28, 1735 (1990).

    Article  CAS  Google Scholar 

  57. G. K. Noren, A. J. Tortorello, and J. T. Vandeberg, in Ref. 21, Vol. II, p. 201.

    Google Scholar 

  58. C. B. Friedlander and D. A. Diehl, Eur. Patent Appl. 322, 808 (1989).

    Google Scholar 

  59. G. K. Noren, Int. Patent Appl. WO 90/01512 (1990).

    Google Scholar 

  60. T. Okuyama, T. Fueno, J. Furukawa, and K. Uyeo, J. Polym. Sci. A 6, 1001 (1968).

    Article  CAS  Google Scholar 

  61. J. V. Crivello and D. A. Conlon, J. Polym. Sci. Polym. Chem. Ed. 22, 2105 (1984).

    Article  CAS  Google Scholar 

  62. J. G. Woods, J. M. Rooney, and S. J. Harris, U. S. Patent 4, 543, 397 (1985).

    Google Scholar 

  63. J. G. Woods and J. M. Rooney, U. S. Patent 4, 640, 849 (1987).

    Google Scholar 

  64. J. Ericsson and A. Hult, Polym. Bull. 18, 295 (1987).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media New York

About this chapter

Cite this chapter

Lapin, S.C. (1992). Radiation-Induced Cationic Curing of Vinyl Ethers. In: Pappas, S.P. (eds) Radiation Curing. Topics in Applied Chemistry. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-0712-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-0712-7_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-0714-1

  • Online ISBN: 978-1-4899-0712-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics