Skip to main content

An Automatic Instrument for the Ultrasonic Measurement of Texture

  • Chapter
Nondestructive Characterization of Materials IV

Abstract

Texture in sheet metal must be controlled in the rolling process to assure the fabrication properties desired in later manufacturing. Drawability is one of the required engineering properties in a family of applications including the manufacture of beverage cans, propane tanks, and automotive parts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Y. C. Liu and G. A. Alers, The anisotropy of young’s modulus in cold-rolled sheets of binary Cu-Zn alloys, Trans. Met. Soc. AIME 236: 489 (1966).

    CAS  Google Scholar 

  2. E. P. Papadakis, Elastic wave velocities in cube-textured copper sheet, Trans. Met. Soc. ATME 236: 1609 (1966).

    CAS  Google Scholar 

  3. E. P. Papadakis, Elastic wave velocities in various alloy strips, Metall. Trans. 2: 575 (1971).

    Article  Google Scholar 

  4. C. A. Stickels and P. R. Mould, The use of Young’s modulus for predicting the plastic-strain ratio of low-carbon steel sheets, Met. Trans. 1: 1303 (1970).

    CAS  Google Scholar 

  5. P. R. Mould and T. E. Johnson, Rapid assessment of drawability of cold-rolled low-carbon steel sheets, Sheet Metal Industries 328 (1973).

    Google Scholar 

  6. R. J. Roe, Inversion of pole figures for materials having elastic anisotropy, J. Appl. Phys. 37: 2069 (1966).

    Article  CAS  Google Scholar 

  7. H. J. Bunge, “Mathematische Methoden der Texturanalyse”, Akademie-Verlag, Berlin, (1969).

    Google Scholar 

  8. G. T. Davies, D. J. Goodwill and R. S. Kallend, Elastic and plastic anisotropy in sheets of cubic metals, Met. Trans. 3: 1677 (1972).

    Google Scholar 

  9. G. A. Alers, G. Huebschen, B. W. Maxfield, W. Repplinger, J. Salzburger, R. B. Thompson and A. Wilbrand, Electromagnetic acoustic transducers in: “Nondestructive Testing Handbook” ASNT, Columbus, Ohio, in press.

    Google Scholar 

  10. R. B. Thompson, Physical principles of measurements with EMAT transducers, in: Ultrasonic measurement methods, R. N. Thurston and A. D. Pierce, eds., Academic Press, N. Y., (1990), p. 157.

    Google Scholar 

  11. Y. Li and R. B. Thompson, Influence of anisotropy on the dispersion characteristics of guided ultrasonic plate modes, J. Acoust. Soc. Amer 87: 1911 (1990).

    Article  Google Scholar 

  12. R. B. Thompson, Electromagnetic, Noncontact Transducers, in: 1973 Ultrasonics Symposium Proceedings, J. de Klerk, ed., IEEE, New York (1973), p. 385.

    Chapter  Google Scholar 

  13. R. B. Thompson, J. F. Smith and S. S. Lee, Inference of stress and texture from the angular dépendance of ultrasonic plate mode velocities, in: “NDE of microstructure for process control”, H. N. G. Wadley, ed., ASM, Metals Park, OH (1985), p. 7.

    Google Scholar 

  14. R. B. Thompson, S. S. Lee and J. F. Smith, Relative anisotropies of plane waves and guided modes in thin orthorhombic plates: implication for texture characterization, Ultrasonics 25: 133 (1987).

    Article  Google Scholar 

  15. R. B. Thompson, S. S. Lee, J. F. Smith and G. C. Johnson, A comparison of ultrasonic and x-ray determinations of texture in thin Cu and Al plates, Met. Trans. 20A: 243 (1989).

    Google Scholar 

  16. M. Hirao, H. Fukuoka, K. Fujisawa and R. Murayama, Ultrasonic characterization texture in zinc-coated steel sheets, in: “Elastic waves and ultrasonic nondestructive evaluation” North-Holland, Amsterdam, (1990), p. 319.

    Google Scholar 

  17. M. Spies and E. Schneider, Nondestructive analysis of the deep-drawing behavior of rolling sheets with ultrasonic techniques, in: “Nondestructive characterization of materials”, Springer-Verlag, Berlin, (1989), p. 296.

    Chapter  Google Scholar 

  18. O. Cassier, C. Donadille and B. Bacroix, Lankford coefficient evaluation in steel sheets by an ultrasonic method, ibid, p. 303.

    Google Scholar 

  19. K. Sakata, D. Daniel, J. J. Jonas and J. F. Bussiere, Acoustoelastic determination of the higher order ODF coefficients up to 1 = 12 and their use for the on-line prediction of r-value, Met. Trans. (in press).

    Google Scholar 

  20. R. B. Thompson and A. V. Clark, Jr., Ultrasonic characterization of texture: basic science and technology transfer, in: “Intelligent processing of materials”, H. N. G. Wadley, ed. (TMS, in press).

    Google Scholar 

  21. A. V. Clark, Jr., A. Govada, R. B. Thompson, J. F. Smith, G. V. Blessing, P. P. Delsanto, and R. B. Mignona, The use of ultrasonics for texture monitoring in aluminum alloys, in “Revies of Progress in Quantitative Nondestructive Evaluation” Vol. 6, D. O. Thompson and D. E. Chimenti, Eds., Plenum Press, NY (1987), p. 1515.

    Chapter  Google Scholar 

  22. W. Y. Lu, J. G. Morris, and Q. Gu, Ultrasonic measurement of the earing behavior of aluminum plate, in “Review of Progress in Quantitative Nondestructive Evaluation”, D. O. Thompson and D. E. Chimenti, Eds., Plenum Press, Vol. 10, NY, in press.

    Google Scholar 

  23. S. J. Wormley, R. B. Thompson and Y. Li, Analysis of a semi-automatic system for the ultrasonic measurement of texture, in: “Review of progress in quantitative nondestructive evaluation”, Vol. 7B, D. O. Thompson and D. E. Chimenti, eds., Plenum Press, NY (1987), p. 1639.

    Google Scholar 

  24. E. Schneider, R. Herzer, D. Bruche and A. Wilbrand, Towards the automated ultrasonic characterization of deep drawability of steel sheets, these proceedings.

    Google Scholar 

  25. R. Murayama, K. Fujisana, H. Fukuoka, M. Hirao and S. Yonehara, Nondestructive evaluation of materials properties with EMAT in “1989 Ultrasonics Symposium Proceedings”, IEEE, NY (1989), p. 1159.

    Chapter  Google Scholar 

  26. A. V. Clark, R. B. Thompson, G. V. Blessing and D. Matlock, Ultrasonic measurement of formability in thin ferritic steel sheets, in “Review of Progress in Quantitative Nondestructive Evaluation,” Vol. 8, D. O. Thompson and D. E. Chimenti, Eds. (Plenum Press, NY, 1989) p. 1031.

    Google Scholar 

  27. S. J. Wormley, K. Forouraghi, Y. Li, R. B. Thompson, and E. P. Papadakis, Application of a fourier transform-phase-slope technique to the design of an instrument for the ultrasonic measurement of texture and stress, in: “Review of progress in quantitative nondestructive evaluation,” Vol. 9A, D. O. Thompson and D. E. Chimenti, eds., Plenum, New York, (1990), p. 951.

    Google Scholar 

  28. Y. Li and R. B. Thompson, unpublished results.

    Google Scholar 

  29. E. P. Papadakis, Future growth of nondestructive evaluation, Trans. IEEE, SU-23: 284 (1976).

    Google Scholar 

  30. E. P. Papadakis, Future growth of nondestructive evaluation: an update, Mater. Eval., 41: 1130 (1983).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media New York

About this chapter

Cite this chapter

Papadakis, E.P. et al. (1991). An Automatic Instrument for the Ultrasonic Measurement of Texture. In: Ruud, C.O., Bussière, J.F., Green, R.E. (eds) Nondestructive Characterization of Materials IV. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-0670-0_54

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-0670-0_54

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-0672-4

  • Online ISBN: 978-1-4899-0670-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics