Skip to main content

Ordered Water in Hydrated Solid-State Polysaccharide Systems

  • Chapter
Water Relationships in Foods

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 302))

Abstract

Water molecules within a monolayer or so of macromolecular surfaces are often located in well-defined positions and have restricted mobility. These ordered water molecules play a role in stabilizing polysaccharide ordered structures and intermolecular interactions that are the basis of the rheological properties utilized in food systems. X-ray fiber diffraction can be used to determine the three-dimensional structures of polysaccharides in solid, but well-hydrated, polycrystalline fibers. In favorable cases, difference Fourier synthesis can be used to locate ordered water molecules in these systems, allowing one to visualize their functionally important interactions. These studies provide relevant evidence regarding water interactions in more hydrated systems and in solution. The functionality of ordered water in some polysaccharides used in food systems, as well as in some connective tissue glycosaminoglycans where the ordered water has been defined in considerable detail, as determined by fiber diffraction, is described in this chapter. These structures allow one to derive some general features of the role of ordered water in such systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. L. Slade and H. Levine, A food polymer science approach to selected aspects of starch gelatinization and retrogradation, in: “Frontiers in Carbohydrate Research-1: Food Applications,” R.P. Millane, J.N. BeMiller, and R. Chandrasekaran, eds., Elsevier, London, (1989).

    Google Scholar 

  2. M. Glicksman (ed.), “Food Hydrocolloids,” CRC Press, Boca Raton (1983).

    Google Scholar 

  3. E.R. Morris, Molecular origin of hydrocolloid functionality, in: “Gums and Stabilizers for the Food Industry-3,” G.O. Phillips, D.J. Wedlock, and P.A. Williams, eds., Elsevier, New York (1986).

    Google Scholar 

  4. J.L. Finney, The organization and function of water in protein crystals, in: “Water: A Comprehensive Treatise,” Vol. 6, F. Franks, ed., Plenum, London (1979).

    Google Scholar 

  5. T.L. Blundell and L.N. Johnson, “Protein Crystallography,” Academic Press, New York (1978).

    Google Scholar 

  6. S.H. Koenig, The dynamics of water-protein interactions: results from measurements of nuclear magnetic resonance relaxation dispersion, in: “Water in Polymers,” S.P. Rowland, ed., ACS Symp. Ser. Vol. 127, Am. Chem. Soc, Washington, DC (1980).

    Google Scholar 

  7. I.P. Kuntz, T.S. Brassfield, G.D. Law, and G.V. Purcell, Hydration of macromolecules, Science 163:1329 (1969).

    Article  CAS  Google Scholar 

  8. C.C.F. Blake, W.C.A. Pulford, and P.J. Artymiuk, X-ray studies of water in crystals of lysozyme, J. Mol. Biol. 167:693 (1983).

    Article  CAS  Google Scholar 

  9. K.D. Watenpaugh, L.C. Sieker, and L.H. Jensen, The structure of rubredoxin at 1.2 Å resolution, J. Mol. Biol. 131:509 (1979).

    Article  CAS  Google Scholar 

  10. M.M. Teeter, Water structure of a hydrophobic protein at atomic resolution: pentagonal rings of water molecules in crystals of crambin, Proc. Natl. Acad. Sci. USA 81:6014 (1984).

    Article  CAS  Google Scholar 

  11. H.J.C. Berendsen, Specific interactions of water with biopolymers, in: “Water: A Comprehensive Treatise,” Vol. 5, F; Franks, ed., Plenum, London (1975).

    Google Scholar 

  12. T. Bluhm, Y. Deslandes, R.H. Marchessault, and P.R. Sundararajan, New insights into the crystal structure hydration of polysaccharides, in: “Water in Polymers,” S.P. Rowland, ed., ACS Symp. Ser. Vol. 127, Am. Chem. Soc, Washington, DC (1980).

    Google Scholar 

  13. I.A. Nieduszynski and R.H. Marchessault, Structure of β, D(l→4)-xylan hydrate, Biopolvmers 11:1335 (1972).

    Article  CAS  Google Scholar 

  14. E.D.T. Atkins and K.D. Parker, Helical structure of a β-D-1,3-xylan, J. Polvm. Sci. Part C 28:69 (1969).

    Article  Google Scholar 

  15. R.H. Marchessault, Y. Deslandes, K. Ogawa, and P.R. Sundararajan, X-ray diffraction data for beta-(1→3)-D-glucan, Can. J. Chem. 55:300 (1977).

    Article  CAS  Google Scholar 

  16. S. Arnott, Twenty years hard labor as a fiber diffractionist, in: “Fiber Diffraction Methods,” A.D. French and K.H. Gardner, eds., ACS Symp. Ser. Vol. 141, American Chemical Society, Washington, DC (1980).

    Google Scholar 

  17. R.P. Millane, Structure determination by fiber diffraction, in: “Computing in Crystallography 4: Techniques and New Technologies,” N.W. Isaacs and M.R. Taylor, eds., Oxford Univ. Press, Oxford (1988).

    Google Scholar 

  18. R.P. Millane and S. Arnott, Digital processing of X-ray fiber diffraction patterns from oriented fibers, J. Macromol. Sci. Phys. B24:193 (1985).

    Article  CAS  Google Scholar 

  19. R.P. Millane and S. Arnott, Background removal in X-ray fiber diffraction patterns, J. Appl. Crvstallogr. 18:419 (1985).

    Article  CAS  Google Scholar 

  20. S. Arnott and A.J. Wonacott, The refinement of the crystal and molecular structures of polymers using X-ray diffraction data and stereochemical constraints, Polymer 7:157 (1966).

    Article  CAS  Google Scholar 

  21. P.J.C. Smith and S. Arnott, LALS: A linked-atom least-squares reciprocal space refinement system incorporating stereochemical restraints to supplement sparse diffraction data, Acta Crvstallogr. A34:3 (1978).

    Article  CAS  Google Scholar 

  22. W.C. Hamilton, Significance tests on the crystallographic R factor, Acta Crvstallogr. 18:502 (1965).

    Article  CAS  Google Scholar 

  23. M. Glicksman, Red seaweed extracts (agar, carrageenans, furcellaran), in: “Food Hydrocolloids,” Vol. 2, M. Glicksman, ed., CRC Press, Boca Raton (1983).

    Google Scholar 

  24. H.H. Selby and W.H. Wynne, Agar, in: “Industrial Gums,” 2nd edn., R.L. Whistler and J.N. BeMiller, eds., Academic Press, New York (1973).

    Google Scholar 

  25. S. Arnott, A. Fulmer, W.E. Scott, I.C.M. Dea, R. Moorhouse, and D.A. Rees, The agarose double helix and its function in agarose gel structure, J. Mol. Biol. 90:269 (1974).

    Article  CAS  Google Scholar 

  26. S. Arnott, W.E. Scott, D.A. Rees, and G.C.A. McNab, Iota-carrageenan: molecular structure and packing of polysaccharide double helices in oriented fibers of divalent cation salts, J. Mol. Biol. 90:253 (1974).

    Article  CAS  Google Scholar 

  27. R.P. Millane, R. Chandrasekaran, S. Arnott, and I.C.M. Dea, The molecular structure of kappa-carrageenan and comparison with iotacarrageenan, Carbohvdr. Res. 182:1 (1988).

    Article  CAS  Google Scholar 

  28. S. Ablett, P.J. Lillford, S.M.A. Baghdadi, and W. Derbyshire, Nuclear magnetic resonance investigations of polysaccharide films, sols and gels. I. Agarose, J. Colloid Interface Sci. 67:355 (1978).

    Article  CAS  Google Scholar 

  29. G.O. Aspinal, Gums and mucilages, Adv. Carb. Chem. Biochem. 24:333 (1969).

    Article  Google Scholar 

  30. G.A. Towle and O. Christensen, Pectin, in: “Industrial Gums,” 2nd edn., R.L. Whistler and J.N. BeMiller, eds., Academic Press, New York (1973).

    Google Scholar 

  31. M.D. Walkinshaw and S. Arnott, Conformations and interactions of pectins. I. X-ray diffraction analyses of sodium pectate in neutral and acidified forms, J. Mol. Biol. 153:1055 (1981).

    Article  CAS  Google Scholar 

  32. M.D. Walkinshaw and S. Arnott, Conformations and interactions of pectins. II. Models for junction zones in pectinic acid and calcium pectate gels, J. Mol. Biol. 153:1075 (1981).

    Article  CAS  Google Scholar 

  33. S. Arnott and A.K. Mitra, X-ray diffraction analyses of glycosaminoglycans, in: “Molecular Biophysics of the Extracellular Matrix,” S. Arnott, D.A. Rees, and E.R. Morris, eds., Humana Press, Clifton, New Jersey (1984).

    Google Scholar 

  34. A.K. Mitra, S. Arnott, R.P. Millane, S. Raghunathan, and J.K. Sheehan, Comparison of glycosaminoglycan structures induced by different monovalent cations as determined by X-ray fiber diffraction, J. Macromol. Sci. Phvs. B24:21 (1985).

    Article  CAS  Google Scholar 

  35. J.M. Guss, D.W.L. Hukins, P.J.C. Smith, W.T. Winter, S. Arnott, R. Moorhouse, and D.A. Rees, Hyaluronic acid: molecular conformations and interactions in two sodium salts, J. Mol. Biol. 95:359 (1975).

    Article  CAS  Google Scholar 

  36. A.K. Mitra, S. Raghunathan, J.K. Sheehan, and S. Arnott, Hyaluronic acid: molecular conformations and interactions in the orthorhombic and tetragonal forms containing sinuous chains, J. Mol. Biol. 169:829 (1983).

    Article  CAS  Google Scholar 

  37. S. Arnott, A.K. Mitra, and S. Raghunathan, Hyaluronic acid double helix, J. Mol. Biol. 169:861 (1983).

    Article  CAS  Google Scholar 

  38. J.J. Cael, W.T. Winter, and S. Arnott, Calcium chondroitin 4-sulfate: molecular conformation and organization of polysaccharide chains in a proteoglycan, J. Mol. Biol. 125:21 (1978).

    Article  CAS  Google Scholar 

  39. R.P. Millane, A.K. Mitra, and S. Arnott, Chondroitin 4-sulfate: comparison of the structures of the potassium and sodium salts, J. Mo 1. Biol. 169:903 (1983).

    Article  CAS  Google Scholar 

  40. W.T. Winter, S. Arnott, D.H. Isaac, and E.D.T. Atkins, Chondroitin 4-sulfate: the structure of a sulfated glycosaminoglycan, J. Mo 1. Biol. 125:1 (1978).

    Article  CAS  Google Scholar 

  41. Y. Ikada, M. Suzuki, and H. Iwata, Water in mucopolysaccharides, in: “Water in Polymers,” S.P. Rowland, ed., ACS Symp. Ser. Vol. 127, Am. Chem. Soc, Washington, DC (1980).

    Google Scholar 

  42. A. Suggett, Polysaccharides, in: “Water: A Comprehensive Treatise,” Vol. 4, F. Franks, ed., Plenum, London (1975).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media New York

About this chapter

Cite this chapter

Millane, R.P., Arnott, S. (1991). Ordered Water in Hydrated Solid-State Polysaccharide Systems. In: Levine, H., Slade, L. (eds) Water Relationships in Foods. Advances in Experimental Medicine and Biology, vol 302. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-0664-9_44

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-0664-9_44

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-0666-3

  • Online ISBN: 978-1-4899-0664-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics