Skip to main content

Part of the book series: NATO ASI Series ((NSSB,volume 242))

Summary

Ultraviolet radiation is a powerful mutagen in eukaryotes and prokaryotes due to its ability to produce premutational lesions of DNA. Of the damage induced by UV-irradiation of DNA at 260 nm, the cyclobutane-type dipyrimidine and the pyrimidine-pyrimidine (6–4) lesions at sites of adjacent pyrimidines are principal cause of mutations. These bulky lesions greatly modify the structure and function of DNA and cause block of DNA replication and cellular death. Prokaryotic and eukaryotic cells are able to repair the DNA lesions as for example the UV-induced pyrimidine dimers. For example, in E.coli, a set of repair enzymes (uvr A,B,C) recognize and eliminate the length of structurally altered DNA, so that resynthesis of DNA can proceed. Thus, the cell survives unmutated to the DNA damage. If the DNA damage is unrepaired, mutations are fixed thanks to a complex interplay of factors e.g. the site of DNA lesion, the replication machinery and, at least in E.coli, a few UV-inducible cell functions.

This paper reviews the mechanisms of UV mutagenesis in E.coli and mammalian cells together with the qualitative and quantitative analysis of UV-induced mutations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Angel, P., Poting, A., Mallick, U., Rahmsdorf, H.J., Schorpp, M., and Herrlich, P., 1986, Induction of metallothionein and other mRNA species by carcinogens and tumor promoters in primary hunan skin fibroblasts, Molec.Cell.Blol., 6:1760.

    Google Scholar 

  • Benbow, R.M., Zuccarelli, A.Y., and Sinsheimer, R.L., 1974, A role for single-strand breaks in bacteriophage OK174 genetic recombination, J.Mol.Biol., 88:629.

    Article  Google Scholar 

  • Bourre, F., and Sarasin, A., 1983, Targeted mut agenesis of SV40 DNA induced by UV light, Nature, 305:68.

    Article  ADS  Google Scholar 

  • Brandenburger, A., Godson, G.N., Radman, M., Glickman, B.W., van Sluis, C.A., and Doubleday, O.P., 1981, Radiation-induced base substitution mutagenesis in single-stranded DNA phage M13, Nature, 294:180.

    Article  ADS  Google Scholar 

  • Brash, D.E., and Haseltine, W.A., 1982, UV-induced mutation hotspots occur at DNA damage hotspots, Nature, 298:189.

    Article  ADS  Google Scholar 

  • Bridges, B.A., and Woodgate, R., 1984, Mutagenic repair in Escherichia coli X. The umuC gene product may be required for replication past pyrimidine dimers but not for the coding error in UV-mutagenesis, Mol.Gen.Genet., 196:364.

    Article  Google Scholar 

  • Bridges, B.A., and Woodgate, R., 1985, Mutagenic repair in Escherichia coli: products of the recA gene and of the umuD and umuC genes act at different steps in UV-induced mutagenesis, Proc.Natl. Acad. Sci.USA, 82:4193.

    Article  ADS  Google Scholar 

  • Burckhardt, S.E., Woodgate, R., Scheuermann, R.H., and Echols, H., 1988, UmuD mutagenesis protein of Escherichia coli: overproduction, purification, and cleavage by RecA, Proc.Natl.Acad.Sci.USA, 85:1811.

    Article  ADS  Google Scholar 

  • Buscher, M., Rahmsdorf, H.J., Liftin, M., Karin, M., and Herrlich, P., 1988, Activation of the c-fos gene by UV and phorbol ester: different signal transduction pathways converge to the same enhancer element, Oncogene, 3:301.

    Google Scholar 

  • Cohen, S.P., Resnick, J., and Sussman, R., 1983, Interaction of single-strand binding protein and RecA protein at the single-stranded DNA site, J.Mol.Biol., 167:901.

    Article  Google Scholar 

  • Cornelis, J.J., Su, Z.Z., and Rommelaere, J., 1982, Direct and indirect effects of ultraviolet light on the mutagenesis of parvovirus H-1 in human cells, The EMBO J., 1:693.

    Google Scholar 

  • Coulondre, C., and Miller, J.H., 1977a, Genetic studies of the lac repressor III. Additional correlation of mutational sites with specific aminoacid residues, J.Mol.Biol., 117:525.

    Article  Google Scholar 

  • Coulondre, C., and Miller, J.H., 1977b, Genetic studies of the lac repressor IV. Mutagenic specificity in the lacI gene of E.coli J.Mol.Biol., 117:577.

    Google Scholar 

  • Coulondre, C., Miller, J.H., Farabaugh, P.J., and Gilbert, W., 1978, Molecular basis of base substitution hotspots in the lacI gene of E.coli, Mature, 274:775.

    Article  ADS  Google Scholar 

  • Craig, N.L., and Roberts, J.W., 1980, E.coli RecA protein-directed cleavage of phage lambda repressor requires polynucleotide, Nature, 283:26.

    Article  ADS  Google Scholar 

  • Craig, N.L., and Roberts, J.W., 1981, Function of nucleoside triphosphate and polinucleotide in Escherichia coli RecA protein-directed cleavage of phage lambda repressor, J.Biol.Chem., 256:8039.

    Google Scholar 

  • Das Gupta, U.B., and Sumners, W.C., 1978, Ultraviolet reactivation of herpes simplex virus is mutagenic and inducible in mamnalian cells, Proc.Natl.Acad.Sci.USA, 75:2378.

    Article  ADS  Google Scholar 

  • Day, R.S. III, and Ziolkowski, C., 1978, Studies on UV-induced viral reversion, Cockayne’s syndrome, and MNNG damage using adenovirus 5, in: “DNA repair mechanisms”, P.C. Hanawalt, E.C. Friedberg and C.F. Fox ed., Academic, New York.

    Google Scholar 

  • Defais, M., Fauquet, P., Radman, M., and Errera, M., 1971, Ultraviolet reactivation and ultraviolet mutagenesis of lambda in different genetic systems, Virology, 43:495.

    Article  Google Scholar 

  • Defais, M., Caillet-Fauquet, P., Fox, M.S., and Radman, M., 1976, Induction kinetics of mutagenic DNA repair activity in E.coli following ultraviolet irradiation, Mol.Gen.Genet., 148:125.

    Article  Google Scholar 

  • Eguchi, Y., Ogawa, T., and Ogawa, H., 1988, Cleavage of bacteriophage O80 CI repressor by RecA protein, J.Mol.Biol., 202:565.

    Article  Google Scholar 

  • Fornace, A.J. Jr., Alamo, I. Jr., and Hollaender, M.C., 1988, DNA damage-inducible transcripts in mammalian cells, Proc.Natl.Acad.Sci.USA, 85:8800.

    Article  ADS  Google Scholar 

  • Gentil, A., Margot, A., and Sarasin, A., 1982, Enhanced reactivation and mutagenesis after transfection of carcinogen-treated monkey kidney cells with UV-irradiated simian virus 40 DNA, Biochimie, 64:693.

    Article  Google Scholar 

  • Glickman, B.W., Schaaper, R.M., Haseltine, W.A., Dunn, R.L., and Brash, D.E., 1986, The C-C (6-4)UV photoproduct is mutagenic in Escherichia coli, Proc.Natl.Acad. Sci.USA, 83:6945.

    Article  ADS  Google Scholar 

  • Herrlich, P., van den Berg, S., Mai, S., Lavi, S., Kaina, B., Stein, B., Ponta, H., and Rahmsdorf, H.J., 1989, Mechanism of the UV response in maranalian cells, in: “Proceedings of the United Kingdom Environmental Mutagen Society/ DNA Repair Network”, Sussex University, Brighton.

    Google Scholar 

  • Horii, T. Ogawa, T., Nakatani, T., Hase, T., Matsubara, H., and Ogawa, H., 1981, Regulation of SOS functions: purification of E.coli LexA protein and determination of its specific site cleaved by the RecA protein, Cell, 27:515.

    Article  Google Scholar 

  • Ichikawa-Ryo, H., and Kondo, S., 1975, Indirect mutagenesis in phage lambda by ultraviolet preirradiation of host bacteria, J.Mol.Biol., 97:77.

    Article  Google Scholar 

  • Kartasova, T., Ponec, M., and van de Putte, P., 1988, Induction of proteins and mRNAs after UV irradiation of hunan epidermal keratinocytes, Exp.Cell.Res., 174:421.

    Article  Google Scholar 

  • Kondo, S., 1969, Mutagenicity versus radiosensitivity in Escherichia coli, in: “Proceedings of the XIIth International Congress on Genetics”, Vol.11.

    Google Scholar 

  • Lebkowski, J.S., Clancy, S., Miller, J.H., and Calos, M.P., 1985, The LacI shuttle: rapid analysis of the mutagenic specificity of ultraviolet light in hunan cells, Proc.Natl. Acad. Sci.USA., 82:8606.

    Article  ADS  Google Scholar 

  • Le Clerc, J.E., and Istock, N.L., 1982, Specificity of UV mutagenesis in the lac promoter of M131ac hybrid phage DNA, Nature, 297:596.

    Article  ADS  Google Scholar 

  • Little, J.W., Edniston, S.H., Pacelli, L.Z., and Mount, D.W., 1980, Cleavage of the Escherichia coli LexA protein by the RecA protease, Proc.Natl.Acad.Sci.USA, 77:3225.

    Article  ADS  Google Scholar 

  • Lytle, C.D., Goddard, J.G., and Lin, C., 1980, Repair and mutagenesis of herpes simplex virus in UV-irradiated monkey cells, Mutation Res., 70:139.

    Article  Google Scholar 

  • Lucke-Huble, C., and Herrlich, P., 1986, Gene amplification in mammalian cells after exposure to ionizing radiation and UV, in: “Radiation carcinogenesis and DNA alterations”, F.J. Burns, A.C. Upton and G. Silini ed., Plenum Press, Amsterdam.

    Google Scholar 

  • Mallick, U., Rahmsdorf, H.J., Yamamoto, N., Ponta, H., Wegner, R.D., and Herrlich, P., 1982, 12-O-tetradecanoylphorbol 13-aeetate-inducible proteins are synthesized at an increased rate in Bloom syndrome f ibroblasts, Proc.Natl.Acad. Sci.USA, 79:7886.

    Article  ADS  Google Scholar 

  • Mezzina, M., Gentil, A., and Sarasin, A., 1981, Simian virus 40 as a probe for studying inducible repair functions in mammalian cells, J.Supramol. Struct. Cell.Biochem., 17:121.

    Article  Google Scholar 

  • Miller, J.H., 1982, Carcinogens induce targeted mutations, Cell, 31:5.

    Article  Google Scholar 

  • Miller, J.H., 1985, Mutagenic specificity of ultraviolet ligt, J.Mol.Biol., 182:45.

    Article  ADS  Google Scholar 

  • Miura, A., and Tomizawa, J., 1968, Studies on radiation sensitive mutants of E.coli III. Participation of the rec system in induction of mutation by ultraviolet irradiation, Mol. Gen.Genet., 103:1.

    Article  Google Scholar 

  • Moore, P.D., Bose, K.K., Rabkin, S.D., and Strauss, B.S., 1981, Sites of termination of in vitro DNA Synthesis on ultraviolet-and N-acetylaminofluorene-treated 0X174 templates by procaryotic and eukaryotic DNA polymerases, Proc.Natl.Acad.Sci.USA, 78:110.

    Article  ADS  Google Scholar 

  • Mount, D.W., Low, K.B., and Edniston, S., 1972, Dominant mutations (lex) in E.coli K12 which affect radiation sensitivity and frequency of ultraviolet light-induced mutations, J.Bacteriol., 112:886.

    Google Scholar 

  • Quillardet, P., and Devoret, R., 1982, Damaged-site independent mutagenesis of phage lambda produced by inducible error-prone repair, Biochimie, 64:789.

    Article  Google Scholar 

  • Quinto, I., and Radman, M., 1987, Carcinogenic potency in rodents versus genotoxic potency in E.coli: a correlation analysis for bifunctional alkylating agents, Mutation Res., 181:235.

    Article  Google Scholar 

  • Quinto, I., Tenenbaum, L., and Radman, M., 1990, Genotoxicity profile of monofunctional alkylating agents in E.coli: quantitative correlations with carcinogenic potency in rodents, Mutation Res., 228:177.

    Article  Google Scholar 

  • Radman, M., 1974, Phenomenology of an inducible mutagenic DNA repair pathway in Escherichia coli: SOS repair hypothesis, in: “Molecular and environnental aspects of mutagenesis”, L. Prakas, F. Sherman, M. Miller, C. Lawrence, and H.W. Tabor ed., Charles C. Thomas Publisher, Springfield.

    Google Scholar 

  • Rahmsdorf, H., Mallick, U., Ponta, H., and Herrlich, P., 1982, A B-lymphocyte-specific high-turnover protein: constitutive expression in resting B cells and induction of synthesis in proliferating cells, Cell, 29:459.

    Article  Google Scholar 

  • Roberts, J.W., Roberts, C.W., and Craig, N.L., 1978, Escherichia coli recA gene product inactivates phage lambda repressor, Proc.Natl.Acad. Sci.USA, 75:4714.

    Article  ADS  Google Scholar 

  • Roberts, J.W., and Devoret, R., 1983, Lysogenic induction, in: “Lambda II”, R.W. Hendrix, J.W. Roberts, F.W. Stahl, and R.A. Weisberg ed., Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.

    Google Scholar 

  • Sarasin, A., and Benoit, A., 1980, Induction of an error-prone mode of DNA repair in UV-irradiated monkey kidney cells, Mutation Res., 70:71.

    Article  Google Scholar 

  • Sauer, R.T., Ross, M.J., and Ptashne, M., 1982, Cleavage of the lambda and P22 repressors by RecA protein, J.Biol.Chem., 257:4458.

    Google Scholar 

  • Schorpp, M., Mallick, U., Rahmsdorf, H.J., and Errlich, P., 1984, UV-induced extracellular factor from human fibroblasts communicates the UV response to nonirradiated cells, Cell, 37:861.

    Article  Google Scholar 

  • Setlow, R.B., Swenson, P.A., and Carrier, W.L., 1963, Thymine dimers and inhibition of DNA synthesis by ultraviolet irradiation of cells, Science, 142:1464.

    Article  ADS  Google Scholar 

  • Shinagawa, H., Iwasaki, H., Kato, T., and Nakata, A., 1988, RecA protein dependent cleavage of UmuD protein and SOS mutagenesis, Proc.Natl.Acad.Sci.USA, 85:1806.

    Article  ADS  Google Scholar 

  • Tenenbaun, L., Quinto I., and Faelen, M., 1988, The E.coli multitest: a set of strains to characterize diverse genotoxic effects, Mutation Res., 203:415.

    Article  Google Scholar 

  • Toman, Z., Dambly-Chaudière, C., Tenenbaun, L., and Radnan, M., 1985, A system for detection of genetic and epigenetic alterations in E.coli induced by DNA damaging agents, J.Mol.Biol., 186:97.

    Article  Google Scholar 

  • Villani, G., Boiteux, S., and Radnan, M., 1978, Mechanisms of ultraviolet-induced mutagenesis: extent and fidelity of in vitro DNA synthesis on irradiated tenplates, Proc.Natl.Acad.Sci.USA, 75:3037.

    Article  ADS  Google Scholar 

  • Walker, G.C., 1984, Mutagenesis and inducible responses to deoxyribonucleic acid damage in Escherichia coli, Microbiol.Rev., 48:60.

    Google Scholar 

  • Weigle, J.J., 1953, Induction of mutation in a bacterial virus, Proc.Natl.Acad. Sci. USA, 39:628.

    Article  ADS  Google Scholar 

  • Witkin, E.M., 1967, Mutation proof and mutation prone modes of survival in derivatives of E.coli B differing in sensitivity to ultraviolet ligjit, Brookhaven Symp.Biol., 20:17.

    Google Scholar 

  • Witkin, E.M., 1969, Ultraviolet induced mutation and DNA repair, Annu.Rev.Mierobiol., 23:487.

    Article  Google Scholar 

  • Witkin, E.M., 1976, Ultraviolet mutagenesis and inducible DNA repair in Escherichia coli, Bacteriol.Rev., 40:869.

    Google Scholar 

  • Wood, R.D., and Hutchinson, F., 1984, Non-targeted mutagenesis of unirradiated lambda phage in Escherichia coli host cells irradiated with ultraviolet light, J.Mol.Biol., 173:293.

    Article  Google Scholar 

  • Wood, R.D., Skopek, T.R., and Hutchinson, F., 1984, Changes in DNA base sequence induced by targeted mutagenesis of lambda phage by ultraviolet light, J.Mol.Biol., 173:273.

    Article  Google Scholar 

  • Wood, R., 1985, Pyrimidine dimers are not the principal pre-mutagenic lesions induced in lambda phage DNA by ultraviolet light, J.Mol.Biol., 184:577.

    Article  Google Scholar 

  • Zamansky, G.B., Kleinman, L.F., Black, P.H., and Kaplan, J.C., 1980, Reactivation of herpes simplex virus in a cell line inducible for simian virus 40 synthesis, Mutation Res., 70:1.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media New York

About this chapter

Cite this chapter

Quinto, I., Mallardo, M., Ruocco, M.R., Arcucci, A., Scala, G. (1991). Ultraviolet Mutagenesis. In: Grandolfo, M., Rindi, A., Sliney, D.H. (eds) Light, Lasers, and Synchrotron Radiation. NATO ASI Series, vol 242. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-0661-8_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-0661-8_20

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-0663-2

  • Online ISBN: 978-1-4899-0661-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics