Skip to main content

The Role of High Performance Liquid Chromatography in Radiochemical/Radiopharmaceutical Synthesis and Quality Assurance

  • Chapter
New Trends in Radiopharmaceutical Synthesis, Quality Assurance, and Regulatory Control
  • 164 Accesses

Abstract

High Performance Liquid Chromatography(HPLC) is a versatile tool in radiopharmaceutical chemistry. Instrumentation, methods and applications have been reviewed as recently as 19861. HPLC has been used for numerous areas associated with the production of radiopharmaceuticals including:

  • analysis of radiochemical and chemical starting materials;

  • determination of both labelled and unlabelled reaction products;

  • optimization of reaction conditions;

  • purification, including separation from chemical and radiochemical impurities;

  • determination of specific activity;

  • determination of radiochemical and chemical purity;

  • determination of the stability of the radiolabelled product during storage, including determination of radiolysis products;

  • validation of other methods of analysis, such as TLC;

  • determination of metabolites.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. Wieland, M. Tobes, and T. Mangner, ed., “Analytical and Chromatographic Techniques in Radiopharmaceutical Chemistry”, Springer-Verlag, New York (1986).

    Google Scholar 

  2. The United States Pharmacopeia, XXII, The United States Pharmacopeial Convention, Inc., Rockville, MD (1989).

    Google Scholar 

  3. C. Dorschel, J. Ekamanis, J. Oberholtzer, F. Warren, Jr. and B. Bidlingmeyer, LC Detectors: Evaluation and Practical Implications of Linearity, Anal. Chem. 61: 951A (1989).

    Google Scholar 

  4. T. Boothe, R. Finn, M. Vora, A. Emran, P. Kothari and S. Wukovnig, Increasing Role of High Performance Liquid Chromatography (HPLC) in Radiopharmaceutical Analysis, in “Synthesis and Applications of Isotopically Labeled Compounds 1985”, R. Muccino, ed., Elsevier Science Publishers, Amsterdam (1986).

    Google Scholar 

  5. T.-Z. Zhou, W. Hirth, W. Heineman and E. Deutsch, Quantitative HPLC Determination of [99mTc]Pertechnetate in Radiopharmaceuticals and Biological Samples-I. Technique Development, Nucl. Med. Biol. 15: 493 (1988).

    CAS  Google Scholar 

  6. R. Nieuwland, H. Das and C. de Ligny, Improvement of the Reproducibility of Ion-Pair HPLC of 99mTc(Sn)EHDP Complexes and the Influence of the Sn(II) Concentration on the Composition of the Reaction Mixture, Appl. Radiat. Isop. 40: 153 (1989).

    Article  CAS  Google Scholar 

  7. T. Tji, H. Vink, W. Gelsema and C. de Ligny, Determination of the Oxidation State of Tc in 99Tc(Sn)EHDP, 99mTc(Sn)EHDP, 99Tc(Sn)MDP and 99mTc(Sn)MDP Complexes. Characterization of Tc(III)-, Tc(IV)- and Tc(V)EHDP Complexes, Appl. Radiat. Isot. 41: 17 (1990).

    Article  CAS  Google Scholar 

  8. Y. Huigen, W. Gelsema and C. de Ligny, Separation of 99mTc(Sn)-EHDP Complexes by Chromatography on TSK G 2000 PW, Using Its Ion Exchange Properties, Appl. Radiat. Isop. 41: 335 (1990).

    Article  CAS  Google Scholar 

  9. M. Holland, W. Heineman and E. Deutsch, Technetium-99m Complexes of Dimethylaminomethylene Diphosphonate(DMAD)-I. Anion Exchange HPLC Characterization of 99mTc(NaBH4)-DMAD Mixtures, Nucl. Med. Biol. 16: 301 (1989).

    CAS  Google Scholar 

  10. M. Holland, J. Bugaj, W. Heineman and E. Deutsch, Technetium-99m Complexes of Dimethylaminomethylene Diphosphonate(DMAD)-II. Biological Distributions of 99mTc-DMAD Components Isolated by Anion Exchange HPLC, Nucl. Med. Biol. 16: 313 (1989).

    CAS  Google Scholar 

  11. H. Kung, B.-L. Liu and S. Pan, Kinetic Study of Ligand Exchange Reaction Between 99mTc-Glucoheptonate and N-Benzyl-N-methyl-piperazinyl-bis(aminoethanethiol)(BPA-BAT), Appl. Radiat. Isop. 40: 677 (1989).

    Article  CAS  Google Scholar 

  12. J. Baldas, J. Bonnyman and Z. Ivanov, Use of High Performance Liquid Chromatography for the Structural Identification of Technetium-99m Radiopharmaceuticals at the NCA Level, J. Nucl. Med. 30: 1240 (1989).

    PubMed  CAS  Google Scholar 

  13. M. Corlija, K. Tubergen, W. Volbert and R. Holmes, Contribution of Radiolytically Induced Dissociation of 99mTc-d,l-HMPAO in Aqueous Solutions, J. Nucl. Med. 31: 806 (abstract) (1990).

    Google Scholar 

  14. M. Marmion, K. Libson and E. Deutsch, New Mixed Tc/Sn Complexes: Relevance to Nuclear Medicine, J. Nucl. Med. 31: 807 (abstract) (1990).

    Google Scholar 

  15. A. Nunn, HPLC as the Archetypical Animal, Nucl. Med. Biol. 16: 187 (1989).

    CAS  Google Scholar 

  16. A. Zimmer, J. Kazikiewicz, S. Spies and S. Rosen, Rapid Miniaturized Chromatography for 111In Labeled Monoclonal Antibodies: Comparison to Size Exclusion High Performance Liquid Chromatography, Nucl. Med. Biol. 15: 717 (1988).

    CAS  Google Scholar 

  17. J. Reynolds, S. Del Vecchio, H. Sakahara, M. Lora, J. Carrasquilla, R. Neumann and S. Larsen, Anti-murine Anitibody Response to Mouse Monoclonal Antibodies: Clinical Findings and Implications, Nucl. Med. Biol. 16: 121 (1989).

    CAS  Google Scholar 

  18. P. Garg, G. Archer Jr., D Bigner and M. Zalutsky, Synthesis of Radioiodinated N-Succinimidyl Iodobenzoate: Optimization for Use in Antibody Labelling, Appl. Radiat. Isop. 40: 485 (1989).

    Article  CAS  Google Scholar 

  19. M. Himmelbach and R. Wahl, Studies on the Metabolic Fate of 111In-labeled Antibodies, Nucl. Med. Biol. 16: 839 (1989).

    Google Scholar 

  20. K. Yokoyama, J. Reynolds, C. Paik, V. Sood, P. Maloney, S. Larson and R. Reba, Immunoreactivity Affects the Biodistribution and Tumor Targzting of Radiolabeled Anti-P97 Fab Fragment, J. Nucl. Med. 31: 202 (1990).

    PubMed  CAS  Google Scholar 

  21. J. Zielinski, J. Larner, P. Hoffer and R. Hochberg, The Synthesis of llßMethoxy-[16a-123I]Iodoestradiol and Its Interaction with the Estrogen Receptor In Vivo and In Vitro, J. Nucl. Med. 30: 209 (1989).

    PubMed  CAS  Google Scholar 

  22. J. Ulin, A. Gee, P. Malmborg, J. Tedroff and B. Langstrom, Synthesis of Racemic (+) and (-) N-[methyl-11C]nomifensine, a Ligand for Evaluation of Monoamine Re-Uptake Sites by Use of Positron Emission Tomography, Apol. Radiat. Isop. 40: 171 (1989).

    Article  CAS  Google Scholar 

  23. J. Vlek, K. Feitsma, T. van der Mark, B. Drenth, A. Paans and W. Vaalburg, Synthesis of d-[11C]Oxyphenonium Iodide, a Potential Radioligand for In Vivo Visualization of Human Cholinergic Muscarinic Receptor-sites by Positron Emission Tomography, Appl. Radiat. Isop. 41: 453 (1990).

    Article  CAS  Google Scholar 

  24. M. Maeda, Y. Koga, T. Fukumura and M. Kojima, d-[11C]Octopamine Synthesis Using [11C]Cyanide: Chemical and Enzymatic Approaches for the [11C]Cyanohydrin Synthesis, Appl. Radiat. Isop. 41: 463 (1990).

    Article  CAS  Google Scholar 

  25. K. Suzuki, O. Inoue, K. Tamate and F. Mikado, Production of 3-N[11C]Methylspiperone with High Specific Activity and High Radiochemical Purity for PET Studies: Suppression of Its Radiolysis, Appl. Radiat. Isop. 41: 593 (1990).

    Article  CAS  Google Scholar 

  26. S. Moerlein, D. Parkinson and M. Welch, Radiosynthesis of High Effective Specific-activity [123I]SCH 23982 for Dopamime D-1 Receptor-based SPECT Imaging, Appl. Radiat. Isop. 41: 381 (1990).

    Article  CAS  Google Scholar 

  27. N. Satyamurthy, J. Barrio, G. Bida, S.-C. Huang, J. Mazziotta and M. Phelps, 3-(2’-[18F]Fluoroethyl)spiperone, a Potent Dopamime Antagonist: Synthesis, Structural Analysis and In-Vivo Utilization in Humans, Appl. Radiat. Isop. 41: 113 (1990).

    Article  CAS  Google Scholar 

  28. D. Kiesewetter, R. Kawai, M. Chelliah, E. Owens, C. McLellan and R. Blasberg, Preparation and Biological Evaluation of 18F-labeled Benzamide Analogues as Potential Dopamine D2 Receptor Ligands, Nucl. Med. Biol. 17: 347 (1990).

    CAS  Google Scholar 

  29. D. Kiesewetter, K. Rice, M. Mattson and R. Finn, Radiochemical Synthesis of [18F]-Fluo rot hienylcyclohexylpiperdine([18F]FTCP), J. Labelled Compd. Radiopharm. 27: 277 (1989).

    Article  CAS  Google Scholar 

  30. M. Adam, J. Grierson and S. Jivan, An Improved HPLC System for the Analysis and Purification of Organic Amine Radiopharmaceuticals, Appl. Radiat. Isot. 40: 91 (1989).

    Article  CAS  Google Scholar 

  31. W. Rzeszotarski, W. Eckelman and B. Francis, Synthesis and Evaluation of Radioiodinated Derivatives of 1-Azabicyclo(2.2.2)oct-3-yl alphahydroxy-alpha-(4-iodophenyl)phenylacetate as Potential Radiopharmaceuticals, J. Med. Chem. 27: 156 (1984).

    Article  PubMed  CAS  Google Scholar 

  32. A. Emran, Radiofluorination of Aromatic Acids for Application in Receptor Studies, in “Proceedings of the 199th ACS National Meeting”, Boston, MA, April (1990).

    Google Scholar 

  33. C. Prenant, L. Barre and C. Crouzel, Synthesis of [11C1–3- Quinuclidinylbenzilate(QNB), J. Labelled Compd. Radiopharm. 27: 1257 (1989).

    Article  CAS  Google Scholar 

  34. S. Ram and L. Spicer, Direct Incorporation of [11C]Carbon Dioxide for Labeling Bioactive Molecules. An Application to [11c] Labeled Tamoxifen, J. Labelled Compd. Radiopharm. 27: 661 (1989).

    Article  CAS  Google Scholar 

  35. D. Yang, A. Emran, W. Tansey, R. Tilbury, L. Kasi, K. Wright, L. Kuang, S. Wallace, and E. Kim, Radiosynthesis of Fluorotamoxifen Analogs, J. Nucl. Med. 31: 903 (abstract) (1990).

    Google Scholar 

  36. M. Adam and S. Jivan, Synthesis and Purification of L-6-[18F]Fluorodopa, Appl. Radiat. Isop. 39: 1203 (1988).

    Article  CAS  Google Scholar 

  37. J. Chen, S.-J Huang, R. Finn, K. Kirk, B. Francis, H. Adams, R. Cohen and C. Chiueh, Quality Control Procedure for 6-[18F]Fluoro-L-DOPA: A Presynaptic PET Imaging Ligand for Brain Dopamine Neurons, J. Nucl. Med. 30: 1249 (1989).

    PubMed  CAS  Google Scholar 

  38. V. Pike, M. Kensett, D. Turton, S. Waters and D. Silvester, Labelling Agents for PET Studies of the Dopaminergic System-Some Quality Assurance Methods, Experiences and Issues, Appl. Radiat. Isop. 41: 483 (1990).

    Article  CAS  Google Scholar 

  39. C. Lemaire, M. Guillaume, R. Cantineau and L. Christiaens, No-CarrierAdded Regioselective Preparation of 6-[18F]Fluoro-L-DOPA, J. Nucl. Med. 31: 1247 (1990).

    PubMed  CAS  Google Scholar 

  40. H. Coenen, K. Franken, P. Kling and G. Stoecklin, Direct Electrophilic Radiofluorination of Phenylalanine, Tyrosine and DOPA, Appl. Radiat. Isop. 39: 1243 (1988).

    Article  CAS  Google Scholar 

  41. O. DeJesus, J. Sunderland, J. Nickles, J. Mukherjee and E. Appelman, Synthesis of Radiofluorinated Analogues of m-Tyrosine as Potential L-Dopa Tracers via Direct Reaction with Acetylhypofluorite, Appl.Radiat. Isop. 41: 433 (1990).

    Article  CAS  Google Scholar 

  42. A. Gelbard, A. Cooper, Y. Asano, E. Nieves, S. Filc-Dericco and K. Rosenspire, Methods for the Enzymatic Synthesis of Tyrosine and Phenylalanine Labeled with Nitrogen-13, Appl. Radiat. Isop. 41: 229 (1990).

    Article  CAS  Google Scholar 

  43. O. DeJesus, J. Mukherjee and R. Khalifah, Synthesis of Radiobrominated m-Tyrosine, J. Labelled Compd. Radiopharm. 27: 189 (1989).

    Article  CAS  Google Scholar 

  44. M. Adam, Y. Ponce, J. Berry and K. Hoy, Synthesis and Preliminary Evaluation of L-6-[123I]Iododopa as a Potential Spect Brain Imaging Agent, J. Labelled Compd. Radiopharm. 28: 155 (1990).

    Article  CAS  Google Scholar 

  45. B. Bauer and R. Wagner, Improved Synthesis of [150]Butanol for Clinical Use, in “Proceedings of the Eight Int. Symp. Radiopharm. Chem.”, Princeton, NJ, June (1990).

    Google Scholar 

  46. G. Gundlach, E. Sattler and U. Wagenbach, Preparation of Carrier-Free 11C-Amino Acids by Insertion of Hot 110-atoms into Valine and 2-Aminobutyric Acid with Retention of Optical Asymmetry, Appl. Radiat. Isop. 40: 637 (1989).

    Article  CAS  Google Scholar 

  47. H. Svard, S.-B. Jigerius and B. Langstrom, The Enzymatic Synthesis of L[3–11C]Serine, Appl. Radiat. Isop. 41: 587 (1990).

    Article  Google Scholar 

  48. K. Hamacher and J. Hanus, Synthesis of 1-[11C]-D,L-Homocysteine thiolactone: a Potential Tracer for Myocardial Ischemia using PET, J. Labelled Compd. Radiopharm. 27: 1275 (1989).

    Article  CAS  Google Scholar 

  49. G. Antoni and B. Langstrom, Synthesis of -Amino[4–11C]ButyricAcid(GABA), J. Labelled Compd. Radiopharm. 27: 571 (1989).

    Article  CAS  Google Scholar 

  50. A. Emran, Synthesis, Reactions and Applications of [11C]thiocyanate, J. Nucl. Med. 29: 1325 (1988).

    Google Scholar 

  51. S. Stone-Elander, P. Roland, C. Halldin, M. Hassan and R. Seitz, Synthesis of [11C]Sodium Thiocyanate for In Vivo Studies of Anion Kinetics Using Positron Emission Tomography(PET), Nucl. Med. Biol. 16: 741 (1989).

    CAS  Google Scholar 

  52. T. Boothe, A. Emran, R. Finn, m. Vora, and P. Kothari Use of 11C as a Tracer for Studying the Synthesis of [11C]Urea from [11C]Cyanide, Int. J. Appl. Radiat. Isop. 36: 141 (1985).

    Article  CAS  Google Scholar 

  53. A. Emran, T. Boothe, R. Finn, M. Vora, and P. Kothari, Use of Liquid Chromatography for the Separation and Determination of Carrier Species Associated with the Synthesis of No-Carrier-Added [11C] Labelled Compounds: Determination of the Specific Activity of [11C]Urea, J. Radioanal. Nucl. Chem. 91: 277 (1985).

    Article  CAS  Google Scholar 

  54. A. Emran, Synthesis of [13N] and/or [11C] Singly or Doubly Labelled Urea, in “Proceedings of the 197th ACS National Meeting”, Dallas, TX, September (1989).

    Google Scholar 

  55. A. Emran, T. Boothe, R. Finn, M. Vora, and P. Kothari, Use of 11C as a Tracer for Studying the Synthesis of Radiolabelled Coumpounds-II: 2[11C]-5,5-Diphenylhydantoin from [11C]Cyanide, Int. J. Appl. Radiat. Isop. 37: 1033 (1986).

    Article  CAS  Google Scholar 

  56. A. Emran, T. Boothe, R. Finn, M. Vora, and P. Kothari, High Specific Activity Measurements Utilizing HPLC in “Proceedings of the 187th ACS National Meeting”, Washington, D.C., August (1983).

    Google Scholar 

  57. A. Emran, T. Boothe, N. Shanbaky, R. Finn, M. Vora, and P. Kothari, Rapid Simultaneous Determination of Diphenylhydantoin, its Major Metabolites and Degradation Products, in “Proceedings of the 192th ACS National Meeting”, Anaheim, CA, September (1986).

    Google Scholar 

  58. D. R. Hwang, L. Lang, C. Mathias, D. Kadmon and M. Welch, N-3[18F]Fluoropropylputrescine as Potential PET Imaging Agent for Prostate and Prostate Derived Tumors, J. Nucl. Med. 30: 1205 (1989).

    PubMed  CAS  Google Scholar 

  59. F. Oberdorfer, E. Hofmann and W. Maier-Borst, Preparation of 18F-Labeled 5-Fluorouracil of Very High Purity, J. Labelled Compd. Radiopharm. 27: 137 (1989).

    Article  CAS  Google Scholar 

  60. M. Vora and R. Lambrecht, Optimized Synthesis of Radioiodinated Rhodamine-123, J. Labelled Compd. Radiopharm. 27: 789 (1989).

    Article  CAS  Google Scholar 

  61. M. Vora, Chromatography of Rhodamine 123 and Rhodamine 110 on Reverse-Phase Liquid Chromatographic Column, J.Liq.Chromatogr. 12: 583 (1989).

    Article  CAS  Google Scholar 

  62. E. Knust, K. Dutschka and H.-J.Machulla, Radiopharmaceutical Preparation of 3–123I-a-methyltyrosine for Nuclear Medical Applications, J. Radioanal. Nucl. Chem. 144: 107 (1990).

    Article  CAS  Google Scholar 

  63. Y. Ding, G. Antoni, J. Fowler, A. Wolf and B. Langstrom, Synthesis of L[5-TT C]Ornithine, J. Labelled Compd. Radiopharm. 27: 1079 (1989).

    Article  CAS  Google Scholar 

  64. H. Coenen, V. Pike, G. Stoecklin and R. Wagner, Recommendation for A Practical Production of [2–18F]Fluoro-2-Deoxy-D-Glucose, Appl.Radiat. Isop. 38: 605 (1987).

    Article  CAS  Google Scholar 

  65. T. Tewson, Procedures, Pitfalls and Solutions in the Production of [18F]2Deoxy-2-fluoro-D-Glucose: a Paradigm in the Routine Synthesis of Fluorine-18 Radiopharmaceuticals, Nucl. Med. Biol. 16: 533 (1989).

    CAS  Google Scholar 

  66. K. Hamacher, H. Coenen and G. Stoecklin, Efficient Stereospecific Synthesis of No-Carrier-Added 2-[18F]Fluoro-2-Deoxy-D-Glucose Using Aminopolyether Supported Nucleophilic Substitution, J. Nucl. Med. 27: 235 (1986).

    PubMed  CAS  Google Scholar 

  67. M. Vora, T. Boothe, R. Finn, P. Kothari, A. Emran, S. Carroll and A. Gilson, Multimillicurie Preparation of 2-[18F1-Fluoro-2-Deoxy-DGlucose via Nucleophilic Displacement with Fluorine-18 Labelled Fluoride, J. Labelled. Compd. Radiopharm. 22: 953 (1985).

    Article  CAS  Google Scholar 

  68. E. Kurst, R. Wortmann and H. Machulla, Synthesis of 2-Deoxy-2-[18F]fluoroD-glucose and 3-Deoxy-3-[18F]fluoro-D-glucose with No-Carrier-Added [18F]fluoride, J. Radioanal. Nucl. Chem. 132: 85 (1989).

    Article  Google Scholar 

  69. S. Yamazaki, R. Iwata and T. Ido, Computer Controlled Synthesis of 2- Deoxy-2-[18F]Fluoro-D-Glucose from [18]Fluoride with Feedback Control, in “CYRIC Annual Report 1989”, 158 (1989).

    Google Scholar 

  70. S. Gatley, S. Brown and C. Thompson, Rapid, Inexpensive Quality Control of Fluorine-18 2-Deoxy-2-Fluoro-D-Glucose Preparations Using the Hexokinase Reaction In Vitro, J. Nucl. Med. 29: 1443 (1988).

    Google Scholar 

  71. F. Oberdorfer, W. Hull, B. Travingq and W. Maier-Borst, Synthesis and Purification of 2-Deoxy-2-[1 F]fluoro-D-glucose and 2-Deoxy-2- [18F]fluoro-D-mannose: Characterization of Products by 1H- and 18F-NMR Spectroscopy, Appl. Radiat. Isop. 37: 695 (1986).

    Article  CAS  Google Scholar 

  72. F. Oberdorfer, K. Kemper and K. Gottschall, Application of Ion Chromatography to the Analysis of 18F-Labelled Deoxyaldohexoses. An Improved System for Monitoring the Chemical Purity of 2-Deoxy-2-[1 F]fluoro-D-glucose and 2-Deoxy-2-[18F]fluoro-D- galactose, in “Proceedings of the Eight mt. Symp. Radiopharm. Chem.”, Princeton, NJ, June (1990).

    Google Scholar 

  73. D. Alexoff, R. Casati, J. Fowler, A. Wolf, C. Shea, D. Schlyer and C.-Y. Shiue, Ion Chromatographic Analysis of 18FDG Produced by [18F]fluoride Displacement: Production of 2-Chloro-2-Deoxy-D-Glucose as an Impurity in the Presence of Chloride Ion, in “Proceedings of the Eight Int. Symp. Radiopharm. Chem.”, Princeton, NJ, June (1990).

    Google Scholar 

  74. Solin, J. Bergman, M. Haaparanta and A. Reissell, Production of 18F from Water Targets. Specific Radioactivity and Anionic Contaminants, Appl. Radiat. Isop. 39: 1065 (1988).

    Article  Google Scholar 

  75. M. Suehiro, M. Iwamoto, I. Arai and T. Nozaki, Bromination, No-CarrierAdded Radiobromination and Simultaneously-occurring Chlorination by Chloramine T, Appl. Radiat. Isop. 41: 439 (1990).

    Article  CAS  Google Scholar 

  76. A. Zimmer, J. Kazikiewicz, S. Rosen and S. Spies, Chromatographic Evaluation of the Radiochemical Purity of Na131I: Effect or Monoclonal Antibody Labeling, Nucl. Med. Biol. 14: 533 (1987).

    CAS  Google Scholar 

  77. M. Sajjad, R. Lambrecht and S. Bakr, Chromatographic Evaluation of the Radiochemical Purity of Reductant-Free Iodine-123, Nucl. Med. Biol. 15: 721 (1988).

    CAS  Google Scholar 

  78. L. Mausner, S. Srivastava, S. Mirzadeh, G. Meinken and T. Prach, 123I Research and Production at Brookhaven National Laboratory, Appl. Radiat. Isop. 37: 843 (1986).

    Article  CAS  Google Scholar 

  79. T. Boothe, A. Emran, R. Finn, P. Kothari and M. Vora, Chromatography of Radiolabelled Anions Using Reversed-Phase Liquid Chromatographic Columns, J. Chromatoor. 333: 269 (1985).

    Article  CAS  Google Scholar 

  80. T. Boothe, R. Finn, M. Vora, A. Emran, P. Kothari and G. Kabalka, Radioiodinations of Organic Molecules on Silica Gel Surfaces, J. Labelled Compd. Radiopharm. 22: 1109 (1985).

    Article  CAS  Google Scholar 

  81. T. Boothe, P. Kothari, P. Smith, E. Tavano and D. Kinney, Evaluation of Several HPLC Column Systems for Anion and Cation Determination in Radiochemical/Radiopharmaceutical Analysis, in “Proceedings of the 198th ACS National Meeting”, Miami Beach, September (1989).

    Google Scholar 

  82. A. Emran, L. Bolomey, R. Tilbury and M. Drew, Continuous Flow System for the Production of 13N-Labelled Tracers to Study Nitrogen Transport and Metabolism, in “Proceedings of the 198th ACS National Meeting”, Miami Beach, FL, September (1989).

    Google Scholar 

  83. J. Brodack, M. Kilbourn and M. Welch, Automated Production of Several Positron-Emitting Radiopharmaceuticals Using a Single Laboratory Robot, A001. Radiat. Isop. 39: 689 (1988).

    Article  CAS  Google Scholar 

  84. A. Luven, M. Perlmutter, G. Bida, G. VanMoffaert, J. Cook, N. Satyamurthy, M. Phelps and J. Barrio, Remote, Semiautomated Production of 6[18F]Fluoro-L-Dopa for Human Studies with PET, Appl. Radiat. Isop. 41: 275 (1990).

    Article  Google Scholar 

  85. T. Ruth, M. Adam, S. Jivan, D. Morris and S. Tyldesley, An Automated Synthesis of L-6-[18F]Fluorodopa, in “Proceedings of the Eight Int. Symp. Radiopharm. Chem.”, Princeton, NJ, June (1990).

    Google Scholar 

  86. A. Plenevaux, R. Cantineau, D. Labar, C. Lemaire and M. Guillaume, Routine Production and Improvement in the Purification of 3-N-(2’[18F]Fluoroethyl)spiperone for Clinical Use, in “Proceedings of the Eight Int. Symp. Radiopharm. Chem.”, Princeton, NJ, June (1990)

    Google Scholar 

  87. K. Hamacher, B. Nebeling, H. Coenen and G. Stoecklin, [18F]NMethylspiperone: Direct N.C.A. Nucleophilic [18F]Fluorination of NMethyl-4-nitrospiperone for Remote Controlled Routine Production of N.C.A. [18F]MSP, in “Proceedings of the Eight Int. Symp. Radiopharm. Chem.”, Princeton, NJ, June (1990).

    Google Scholar 

  88. M. Channing, P. Plascjak, W. Meyer, Jr., N. Simpson, Y. Sheh, R. Adams, D. Kiesewetter, B. Dunn and R. Finn, Radiochemical Automation Achieved through a Modified Autosampling Devise, Nucl. Inst. Meth. Phvs. Res. B40 /41: 1121 (1989).

    Article  Google Scholar 

  89. M. Senda, M. Suchiro, T. Sasaki, H. Toyama, K. Kitani, K. Miki, T. Hiroishi, H. Suzuki, T. Hiasa and Y. Miyake, Automated Quality Test of Positron Emitting Radiopharmaceuticals in a Clinical PET Center, Eur. J. Nucl. Med. 16 (Suppl): S73 (1990).

    Google Scholar 

  90. K. Rosenspire, W. Hirth, S. Jurisson, D. Nowotnik, W. Eckelman and A. Nunn, Direct Chromatographic Analysis of Metabolites of Lipophilic Tracers in Whole Blood by ISRP Chromatography, in “Proceedings of the Eight Int. Symp. Radiopharm. Chem.”, Princeton, NJ, June (1990).

    Google Scholar 

  91. O. Solin, M. Haaparanta, J. Sunderland, O. de Jesus and R. Nickles, A ß- Flow-Through Detector for HPLC Analysis of PET Metabolites, J. Nucl. Med. 31: 749 (abstract) (1990).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media New York

About this chapter

Cite this chapter

Boothe, T.E., Emran, A.M. (1991). The Role of High Performance Liquid Chromatography in Radiochemical/Radiopharmaceutical Synthesis and Quality Assurance. In: Emran, A.M. (eds) New Trends in Radiopharmaceutical Synthesis, Quality Assurance, and Regulatory Control. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-0626-7_38

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-0626-7_38

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-0628-1

  • Online ISBN: 978-1-4899-0626-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics