Skip to main content

On the Gravitational Field of an Arbitrary Axisymmetric Mass Endowed with Magnetic Dipole Moment

  • Chapter
Gravitation and Modern Cosmology

Part of the book series: Ettore Majorana International Science Series ((EMISS,volume 56))

Abstract

The well-known Birkhoff’s theorem1, the proper understanding of which became possible in many respects thanks to the paper by Peter Bergmann et al2., establishes the uniqueness of the Schwarzschild spacetime as the only static spherically symmetric solution of Einstein’s equations in vacuum. Interestingly, until recently it has not been known any asymptotically flat magnetostatic generalization of this very important spacetime refering to a magnetic dipole. Only in a series of papers3–6, 70 years, after the discovery by Schwarzschild, the first exact asymptotically flat solutions of the static Einstein-Maxwell equations representing the exterior field of a massive magnetic dipole and possessing the Schwarzschild limit have been obtained by application of the nonlinear superposition technique to the Bonnor magnetic dipole solution7 (the latter reduces to the Darmois metric8 in the absence of magnetism). From the point of view of astrophysics, mostly dealing with deformed objects, it would be more advantageous, however, to have an asymptotically flat metric which would describe the gravitational field of an arbitrary axisymmetric mass endowed with magnetic dipole moment. In the second Section of the present article we give a possible solution of this problem by generalizing the result of the paper3 in the case of an arbitrary set of mass-multipole moments. To obtain such generalization, we construct in the explicit form the full metric describing the nonlinear superposition of the solution3 with an arbitrary static vacuum Weyl field. In the third Section we derive a charged version of the magnetostatic solution obtained in the second Section; the new metric which also generalizes the stationary electrovacuum solution given by the formulae (6), (7) of the paper9 represents the field of an arbitrary axisymmetric rotating mass whose electric charge and magnetic dipole moment are defined by two independent parameters, in contradistinction to the Kerr-Newman metric10, the magnetic field of which, being caused by the rotation of a charged source, disappears in a static limit. At the same time it should be mentioned that our electrovacuum solution, like the solutions9, has no stationary pure vacuum limit: it becomes magnetostatic in the absence of electric charge, and electrostatic in the absence of magnetic dipole moment, describing in the latter case the field of a charged static arbitrary axisymmetric mass.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G. D. Birkhoff, Relativity and Modern Physics, Harvard Univ. Press, Cambridge, 255 (1923).

    Google Scholar 

  2. P. G. Bergmann, M. Cahen, and A. B. Komar, Spherically symmetric gravitational fields, J. Math. Phys. 6: 1 (1965).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  3. Ts. I. Gutsunaev, and V. S. Manko, On the gravitational field of a mass possessing a magnetic dipole moment, Phys. Lett. Al23: 215 (1987).

    ADS  MathSciNet  Google Scholar 

  4. Ts. I. Gutsunaev, and V. S. Manko, New static solutions of the Einstein-Maxwell equations, Phys. Lett. A132: 85 (1988).

    Article  MathSciNet  Google Scholar 

  5. Ts. I. Gutsunaev, V. S. Manko, and S. L. Elsgolts, New exact solutions of the static Einstein-Maxwell equations, Class. Quant. Gray. 6: L41 (1989).

    Article  ADS  MathSciNet  Google Scholar 

  6. V. S. Manko, New axially symmetric solutions of the Einstein-Maxwell equations, Gen. Relat. Gravit. 22: 799 (1990).

    ADS  MATH  MathSciNet  Google Scholar 

  7. W. B. Bonnor, An exact solution of the Einstein-Maxwell equations referring to a magnetic dipole, Z. Phys. 190: 444 (1966).

    Article  ADS  MathSciNet  Google Scholar 

  8. G. Darmois, Les equations de la gravitation einsteinienne, in: “Memorial des sciences mathematique”, Fasc. X XV, Gauthier-Villars, Paris (1927).

    Google Scholar 

  9. Ts. I. Gutsunaev, and V. S. Manko, New stationary electrovacuum generalizations of the Schwarzschild solution, Phys. Rev. D40: 2140 (1989).

    ADS  MathSciNet  Google Scholar 

  10. E. T. Newman, E. Couch, K. Chinnapared, A. Exton, A. Prakash, and R. Torrence, Metric of rotating, charged mass, J. Math. Phys. 6: 918 (1965).

    Article  ADS  MathSciNet  Google Scholar 

  11. Ts. I. Gutsunaev, and V. S. Manko, On a family of solutions of the Einstein-Maxwell equations, Gen. Relat. Gravit. 20: 327 (1988).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  12. M. Yamazaki, On the Hoenselaers-Kinnersley-Xanthopoulos spinning mass fields, J. Math. Phys. 22: 133 (1981).

    Article  ADS  MathSciNet  Google Scholar 

  13. C. M. Cosgrove, Relationships between the group-theoretic and soliton-theoretic techniques for generating stationary axisymmetric gravitational solutions, J. Math. Phys. 21: 2417 (1980).

    Article  ADS  MathSciNet  Google Scholar 

  14. W. Dietz, and C. Hoenselaers, A new class of bipolar vacuum gravitational fields, Proc. Roy. Soc. Lond. A382: 221 (1982).

    Article  ADS  MathSciNet  Google Scholar 

  15. W. B. Bonnor, Exact solutions of the Einstein-Maxwell equations, Z. Phys. 161: 439 (1961).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  16. V. S. Manko, On the description of the external field of a static deformed mass, Class. Quant. Gray. 7: L209 (1990).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  17. A. Papapetrou, Eine rotationssymmetrische Losung in der Allgemeinen Relativitatstheorie, Ann. Physik 12: 309 (1953).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  18. A. W. Martin, and P. L. Pritchett, Asymptotic gravitational field of the “electron”, J. Math. Phys. 9: 593 (1968).

    Article  ADS  MATH  Google Scholar 

  19. F. J. Ernst, New formulation of the axially symmetric gravitational field problem II, Phys. Rev. 168: 1415 (1968).

    Article  ADS  Google Scholar 

  20. D. Kramer, and G. Neugebauer, Eine exakte stationare Losung der Einstein-Maxwell Gleichungen, Ann. Physik 24: 59 (1969).

    Article  ADS  MathSciNet  Google Scholar 

  21. H. Reissner, Uber die Eigengravitation des electrischen Feldes nach der Einsteinschen Theorie, Ann. Physik 50: 106 (1916).

    Article  ADS  Google Scholar 

  22. G. Nordstrom, On the energy of the gravitational field in Einstein’s theory, Proc. Kon. Ned. Akad. Wet. 20: 1238 (1918).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media New York

About this chapter

Cite this chapter

Novikov, I.D., Manko, V.S. (1991). On the Gravitational Field of an Arbitrary Axisymmetric Mass Endowed with Magnetic Dipole Moment. In: Zichichi, A., de Sabbata, V., Sánchez, N. (eds) Gravitation and Modern Cosmology. Ettore Majorana International Science Series, vol 56. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-0620-5_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-0620-5_11

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-0622-9

  • Online ISBN: 978-1-4899-0620-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics